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Abstract

Preferential attachment models for random
graphs are successful in capturing many char-
acteristics of real networks such as power law
behavior. At the same time they lack flexi-
bility to take vertex to vertex affinities into
account, a feature that is commonly used in
many link recommendation algorithms.

We propose a random graph model based on
both node attributes and preferential attach-
ment. This approach overcomes the limita-
tion of existing models on expressing vertex
affinity and on reflecting properties of differ-
ent subgraphs. We analytically prove that
our model preserves the power law behav-
ior in the degree distribution as expressed by
natural graphs and we show that it satisfies
the small world property. Experiments show
that our model provides an excellent fit of
many natural graph statistics and we provide
an algorithm to infer the associated affinity
function efficiently.

1 INTRODUCTION

Many natural systems can be represented as networks
of interacting units: web pages connected through hy-
perlinks, molecular interaction in living cells, nerve
cells in the brain, or the social network of interact-
ing people are just a few examples. Modern network
science explores graphs to identify the structural prop-
erties and come up with simple rules or generative pro-
cesses capable of creating these networks.

Preferential attachment models have a long and pros-
perous history of modeling natural graphs. The sim-
plest version is due to Erdős and Rényi [1] who propose
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a random link-generating process. Despite its simplic-
ity this model proved to be very powerful in model-
ing important graph properties. That said, it fails to
capture power-law behavior. The Buckley-Osthus [2]
model addresses this by allowing for preferential at-
tachment between vertices. That is, high-degree ver-
tices are more likely to attract further links. Mimick-
ing the properties of the Pitman-Yor [3] process allows
one to obtain a large degree of attachment strategies.

At the same time, real-world link recommendation al-
gorithms such as [4, 5, 6, 7] use a vast range of vertex
attributes, in addition to the degree of a vertex, to
suggest additional edges. This indicates that vertex
to vertex affinity is quite unsurprisingly a key factor
in social graphs. The same holds for inferring edges
on the World Wide Web [8] — there the fact that two
pages originate from the same domain or share a more
detailed prefix is highly predictive for their propensity
of establishing a link. Furthermore, it is desirable to
model networks with heterophily towards particular
attributes, such as gender, while showing homophily
towards others, such as body shape, age or education,
using the same framework.

The present paper addresses this issue by deriving
an integrated model combining both preferential at-
tachment and vertex affinity in a generative graph
model. Our work borrows from a number of sources.
Firstly, we build on the preferential attachment mod-
els of Buckley and Osthus [2] to address the power law
behavior of vertex degrees. Secondly, we use affinity
modifiers similar to the edge generation of the Distance
Dependent Chinese Restaurant Process [9]. These al-
low us to model local variation in edge generation.

Outline: We begin reviewing related models in Sec. 2,
laying the foundation for the Preferential Attachment
in Graphs with Affinities, PAGA, in Sec. 3. In partic-
ular, we derive detailed properties such as the degree
distribution, the diameter, and the clustering coeffi-
cient for PAGA graphs. Sec. 4 demonstrates that the
derived properties closely match the observed statis-
tics on real graphs. We present an affinity inference
algorithm in Sec. 5, followed by a conclusion in Sec. 6.

*Both student authors had equal contribution.
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2 RELATED WORK

Random graph generative models have a successful his-
tory, dating back to the works of Erdős and Rényi
[1, 10, 11]. Their general approach begins by defining
a probability space Gtm over the set of all graphs having
t vertices and an average degree of m per vertex. The
goal is to study the properties satisfied by a typical
random graph Gtm ∈ Gtm. To be precise, we say Gtm
satisfies a property P if

lim
t→∞

Pr(Gtm satisfies P) = 1.

In other words we only require that in the limit of
an infinitely large graph the property P holds with
probability 1. One common way of obtaining graphs
drawn from the Erdős-Rényi model is to draw each
edge (i ∼ j) for i, j ∈ Gtm from a binomial distribution
with probability tm

t(t−1)/2 = 2m
t−1 .

While the Erdős-Rényi model has many desirable
properties [12], it does not yield natural vertex degree
distributions. Most importantly, it does not generate
the ubiquitous power-law degree distributions [13, 14].
Accordingly, the question of graph generative models
satisfying power laws has received much interest. Be-
fore going into further detail we summarize the used
notation below.

Vt Vertex set Vt = {1, 2, . . . , t}
Gt1 Graph on Vt with t edges
Gtm Graph on Vt with mt edges
X(k, t) Set of vertices with degree k for Gt1/Gtm
N(k, t) Expected size X(k, t), i.e. E [X(k, t)]
dt(v) Degreee of node v in graph Gt1
dt,i(v) Degree of (super) node v in graph Gmt+i−1

1

f(i, j) Similarity function between node i and j
f̄(·, t) Average similarity between node t and

nodes {1, . . . , t− 1}, i.e. 1
t−1

∑t−1
j=1 f(j, t)

2.1 Bollobás-Riordian model

One of the most successful principles to realize power-
law degree distributions are the preferential attach-
ment random graph models, where new connections
are made preferentially to more popular nodes. They
were first introduced by [15], followed by a precise def-
inition and analysis by Bollobás and Riordian [16].

The model proceeds in two stages: first an iterative
process draws graphs Gt1 using preferential attachment
akin to the Chinese Restaurant Process [17]: G1

1 has
a single vertex and a self loop. Gt+1

1 is obtained from
Gt1 by adding an edge (t+ 1, v) according to

Pr {(t+ 1, v)} =

{
dt(v)
2t+1 for v ≤ t

1
2t+1 for v = t+ 1.

(1)

By incorporating the degree of the vertices dt(v), the
preferential attachment is realized. To obtain graphs
Gtm with vertex degree higher than 1 one first gener-
ates Gtm1 and subsequently merges m sets of vertices
{mi+ 1, . . .m(i+ 1)} into super nodes i in Gtm. This
construction yields to a degree distribution following
a power law of the form k−3 [16].

2.2 Buckley-Osthus model

A problem of the above model is that the power-law
exponent of 3 is by no means universal. This requires a
correction of the preferential attachment rule (1) along
the lines of the Pitman-Yor process [3]. Buckley and
Osthus [2] modify (1) as follows:

Pr {(t+ 1, v)} =

{
dt(v)+a−1
(a+1)t+a for v ≤ t

a
(a+1)t+a for v = t+ 1.

(2)

Here one uses a global attraction factor a to adjust
the balance between the generation of self-loops and
attachment to vertices with degree dt(v). For a ∈ N
and 0 ≤ k ≤ n

a+1
100 one obtains graphs with power-law

in degree distribution of k−2−a [2].

Restrictions on the choice of k and the integrality con-
straint on a limit the applicability of the result. This
was later generalized by [18], yielding a much for flex-
ible power-law. Still, all of these models exploit only
the structural information to generate the graph. In
practice, however, vertex to vertex affinity based on
further attributes is a key factor in social graphs.

2.3 Vertex attribute models

The above discussed models are successful in capturing
the structural property of a network while lacking any
information regarding vertex properties. We discuss
some more common vertex attribute models below.

The Relational Topic Model of [19] takes both links
and vertex properties into account. It builds on the
Latent Dirichlet Allocation model of [20]: first all doc-
uments are generated using LDA. Subsequently links
between pairs of documents are sampled according to
a distribution that depends on the topics used to gen-
erate each of the constituent documents. Effectively
this amounts to a Mixed Membership Stochastic Block
Model [21] with an auxiliary document generating pro-
cess. Such models efficiently yield joint models of side
information and link structure.

Note, however, that such a process cannot generate
power law degree distributions among the vertices,
since it belongs to the family of infinitely exchangeable
Bayesian graph models. The issue was pointed out by
[22]. More specifically, [22] implies that any infinitely
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jointly exchangeable graph must be either dense or
empty. This can be seen as follows: by virtue of the
Aldous-Hoover theorem [23] the adjacency matrix A
of a graph must be drawn iid via

Aij
d
= F (Ui, Uj , U{i,j}) (3)

for a random function F : [0, 1]3 → 0, 1 where (Ui)i∈N
and (U{i,j})i,j∈N is a sequence and symmetric matrix
of independent uniform [0, 1] random variables. This
is equivalent to writing:

Aij
d
= I{U{i,j}≤W (Ui,Uj)} (4)

for some function W : [0, 1]2 → [0, 1]. Thus, integra-
tion yields that Pr {Aij = 1} = p for some p ∈ [0, 1]. In
other words, the number of edges is θ(t2) for graphs
with t vertices for any p > 0. Otherwise the graph
is empty. The generative model is misspecified [22].
Similar degeneracies have been pointed out for the Ex-
ponential Random Graph Models (ERGM) yielding to
undesired properties of the degree distribution [24, 25].

Recently, there have been efforts to overcome this lim-
itation by moving from matrices/arrays to graphons
which are functions over continuous domains [26, 27].
Although this approach seems to overcome the limita-
tion of degeneracy, the practical implications of these
models to real network data are still unclear [28].

As an alternative, our work addresses such prob-
lems by relying on a well-established graph generative
model, which satisfies crucial graph properties, and we
extend it by vertex affinities. This idea enables us to
prove important properties rigorously and to recon-
struct real graphs while preserving key statistics.

Further related models: The Multiplicative Attribute
Graph (MAG) model [29] considers networks where
each node is associated with a vector of categorical
attributes. It requires a specific attribute-attribute
similarity matrix to generate graph node affinities and
it ignores the important aspect of preferential attach-
ment. In contrast, our proposed PAGA model com-
bines node similarities with node popularity and allows
to incorporate any similarity function. Accordingly, as
a further advantage, PAGA can also capture the cor-
relations between features (cf. Sec. 5 for an example),
while MAG is limited to independent features.

In [30], the principle of preferential attachment has
been extended by assigning nodes to fixed states in an
arbitrary metric space and by biasing the attachment
probabilities according to an affinity function. Here,
nodes have to be both similar and popular to realize
linkage, leading to a rather restrictive model. PAGA,
in contrast, considers a link probability model where
nodes might be connected if they are either popular or
similar. This principle leads to more realistic modeling
of natural graphs, e.g., allowing to establish connec-

tions even if nodes are dissimilar (many websites link
to Google for its popularity despite their dissimilarity).
Furthermore, for PAGA we prove important character-
istics such as the small world property and we conduct
empirical studies to analyze whether the PAGA graphs
match the statistics observed for real graphs.

PAGA combines preferential attachment with node
affinities. As a different direction, [31] enhances the
idea of preferential attachment by constraining link-
age to nodes within a certain distance. Thus, intu-
itively, the similarity function between nodes corre-
sponds to the indicator function based on the selected
distance threshold. A generalization of this idea has
been proposed in [32], leading to similar properties as
mentioned for the work [30] above. While there is no
discussion how to distribute nodes in the geometric
space or how to specify reasonable distance thresholds
to match properties of real graphs, in this paper we ad-
ditionally provide a principle for learning the similarity
function. Finally, in [31, 32] the power-law exponent of
the degree distribution is limited to values larger than
3, while PAGA captures the properties of real graphs
much better by realizing values larger than 2.

2.4 Distance dependent CRP

Related to our approach is the generative process used
in the Distance Dependent Chinese Restaurant Pro-
cess (ddCRP) of [9]. Note that the latter is only used
to generate partitions of sets, while ignoring the edges
generated in the process of inferring partitions.

In a nutshell, in the sequential version of the ddCRP
nodes are added sequentially. A node t+1 is connected
to another node v based on the following distribution:

Pr {(t+ 1, v)} =

{ f(v,t+1)

α+tf(·,t+1)
for v ≤ t

α
α+tf(·,t+1)

, for v = t+ 1
(5)

Here f is an affinity function that decays with the
’distance’ between vertices. See [9] for further details.

3 Preferential Attachment in Graphs
with Affinities

3.1 Motivation and Contributions

While preferential attachment models successfully cap-
ture key properties such as the degree distribution,
they fail to include intuitive reasons behind the link
generation: the affinity between vertices based on their
latent or observed attributes. It is natural that the
generative process underlying the graph takes into ac-
count such vertex properties, e.g. web pages of similar
content or within the same domain are much more
likely to link to each other than dissimilar pages.
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(a) Real graph (b) PAGA (c) B-O model

Figure 1: The real graph analysis in (a) reveals the fact that subgraphs follow distinct power laws. While PAGA
can accomplish subgraph power laws (b), the B-O model fails to capture those properties (c).

As stated in its name, Preferential Attachment in
Graphs with Affinities (PAGA) incorporates such ver-
tex affinities as follows: while in the Buckley-Osthus
model [33] the attraction a between vertices is con-
stant, we vary a as a function f(u, v) of the vertices
(u, v) to be connected. This allows us to model local
variations of attraction.

Using f not only allows to consider affinity but also
enables to better represent the characteristics of com-
munity subgraphs: As observed in [34], the induced
subgraphs of real communities in natural graphs show
a power-law degree distribution and – even more im-
portant in our scenario – the distributions vary be-
tween different communities. To illustrate this more
clearly, we analyzed in Figure 1a the YouTube dataset
available at the Stanford Network Analysis Project
(SNAP). This dataset (and further ones studied in
[34]) contains externally provided community labels,
representing real communities of the graph. Figure 1a
shows the degree distributions of the induced sub-
graphs of three randomly selected communities as well
as the degree distribution of the whole graph. Clearly,
the power laws are different. As shown in Fig. 1b,
PAGA can mimic this effect by using an appropriate
affinity function. We will discuss the specific instanti-
ation in more detail in Section 4. In contrast, the BO
model cannot capture this effect, as evident in Fig. 1c.

Moreover, PAGA allows different inter and intra-
community connections. To illustrate this, we drew
a representative graph generated by the BO model for
power law exponent 2.48 in Figure 2 (left column).
This is compared to a graph generated by PAGA with
same overall power-law of 2.48 (right column). In this
scenario, the function f is instantiated such that 10
communities are generated, showing higher affinity be-
tween nodes within the same community (cf. Sec. 4).
Clearly, community structure is evident as the sub-
graphs exhibit distinct connectivity. Yet, at the same
time, both graphs exhibit essentially the same power
law behavior (cf. lower part of Fig. 2). As shown, the

PAGA model captures the same global characteristics
as the BO model and additionally allows to model local
characteristics of the graph based on vertex affinity.

In summary, our contributions are as follows:

• We give a construction for a random graph model
which takes into account affinity among vertices.
• We obtain exact analytical answers for structural

and topological characteristics of the graph.
• We compare properties of the graphs generated

by PAGA to characteristics of real graphs.

As a supplementary contribution, we also discuss an
inference algorithm to learn f based on observed data.
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Figure 2: Left column: graph drawn using the Buckley-
Osthus model. Right column: graph generated via
PAGA. The BO model does not allow us to attach
higher affinity within each subblock, as can be seen in
the top row (in an unordered adjacency matrix both
graphs would be visually indistinguishable). Note that
both models exhibit the desired power law behavior.
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3.2 Model

Our model combines ideas of the Buckley-Osthus
model with the distance dependent Chinese Restau-
rant Process. For this purpose denote by Gtm the fol-
lowing random graph process.

• Start with the undirected graph G1
1 consisting of one

vertex with a self-loop.
• Given Gt1, PAGA models the probability of a new

vertex t + 1 to be connected with an existing ver-
tex v via a single edge according to the following
distribution:

Pr {(t+ 1, v)} =


dt(v)+f(v,t+1)−1

(f(·,t+1)+1)(t+1)−1
for v ≤ t

f(·,t+1)

(f(·,t+1)+1)(t+1)−1
for v = t+ 1

Here f̄(·, t) denotes the average similarity between
node t and nodes {1, . . . , t− 1}, i.e.

f̄(·, t) :=
1

t− 1

t−1∑
j=1

f(j, t).

In other words, the new vertex t + 1 connects to
a random vertex v, where the probability that a
vertex is chosen as v is proportional to its degree
(at the current time) as well as its similarity to the
new vertex.

• For the case m > 1, we add m edges from t+ 1 one
at a time, counting the previous edges as well the
edges being added as already contributing to the
degrees. Equivalently, we collapse Gmt1 into Gtm as
in the Buckley-Osthus model.

It is clear from the construction that this model inher-
its the preferential attachment properties of the pre-
vios models. Moreover, f acts as a means for mod-
erating the affinity between vertices. To verify our
intuition, we now proceed to analyze important graph
properties satisfied by the PAGA model.

3.3 Degree distribution

We will prove that the generated graphs show a power-
law in degree distribution with exponent 2 + f̄(·, t).
Note that this new exponent has much higher degree
of freedom compared to the previous random graph
models as the term f̄(·, t) depends on the similarities
between node pairs.

Theorem 1 Let m ≥ 1 be a fixed integer. Assume
that the similarity function satisfies ∀u, v : f(u, v) ≥ 0
and Ω( 1

t ) ≤ f(·, t) ≤ O(1). Then in Gtm, the ex-
pected value N(k, t), for k ≥ m asymptotically fol-

lows a power-law, i.e. asymptotically we have N(k,t)
t ∼

k−2−f̄(·,t). In fact we have a stronger result that:

N(k, t) =c(k, t,m+ 1)t+Om

(
1

k

)
c(k, t, i) =

{
B(k+m(f(k,t,i)−1)),f(·,t)+2)

B(m(f(m,t))),f(·,t)+1)
, k ≥ m,

0, k < m.

(6)

where c(k, t,m + 1) ∼ k−2−f̄(·,t) asymptotically and
f(k, t, i) is defined as:

f(k, t, i) =

∑t
j=1 Pr(dt,i(j) = k)f(j, t+ 1)∑t

j=1 Pr(dt,i(j) = k)

=

∑t
j=1 Pr(dt,i(j) = k)f(j, t+ 1)

N(k, t, i)
. (7)

Here, B(α, β) = Γ(α)Γ(β)/Γ(α + β) is the Beta func-
tion which generalizes the combinatorial coefficient.

Proof: Our proof strategy is as follows1:

1. ExpressN(k, t) in terms ofN(k, t, i), the expected
value for the number of vertices of degree k not
including the last node (t+ 1) before the ith step.

N(k, t+1) = N(k, t,m+1)+Pr(dt,m+1(t+1) = k)
(8)

where N(k, t, i+ 1) is defined as:

N(k, t, i+ 1) =
t∑

v=1

Pr(dt,i+1(v) = k) (9)

2. Show that

Pr(dt,m+1(t+1) = k) = [k = m]+Om

(
1

tf̄(·, t+ 1)

)
(10)

3. Then it would suffice to show that
N(k, t,m+1)+[k = m] = c(k, t,m+1)t+Om

(
1
k

)
,

by proving the following result:∣∣∣∣N(k, t, i) +
i− 1

m
[k = m]−

c(k, t, i)

(
t+

i

m
− 1

m(1 + f(·, t)

)∣∣∣∣ = Om

(
1

k

)
(11)

4. We complete the proof by showing that c(k,m+1)

asymptotically behaves as k−2−f(·,t). �

To finish the study of the degree distribution, we show
that X(k, t) is concentrated around its expectation.

Corollary 2

As t→∞, X(k,t)
t → c(k, t,m+ 1) in probability.

1The full proofs of Theorem 1, 3, and 4 are available in
the appendix.
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Proof: Define a martingale process Zs =
E[X(k, t)|Gsm] for 0 ≤ s ≤ t. Note that Zt = X(k, t)
while Z0 = E[X(k, t)] = N(k, t) and |Zs−Zs−1| ≤ 2m
as two nodes which got connected at time s would not
affect the degree distribution of other nodes. Using
the Azuma-Hoeffding inequality [35, 36] we obtain:

Pr (|X(k, t)−N(k, t)| > ε) ≤ 2 exp

(
− ε

2

8t

)
Now by selecting ε =

√
t log t, we have:

Pr

(∣∣∣∣X(k, t)

t
− c(k, t,m+ 1)

∣∣∣∣>
√

log t

t

)
≤ 2t−1/8m2

→ 0

as t→∞. �

3.4 Small world property and clustering
coefficients

Next, we show that PAGA graphs satisfy the small
world property, i.e. they show a small diameter.

Theorem 3 Let m ≥ 1 be a fixed integer. Assume
that the similarity function satisfies ∀u, v : f(u, v) ≥ 0
and Ω( 1

t ) ≤ f(·, t) ≤ O(1). Then in Gtm, whp the
diameter is at most c log t, for some constant c.

We conclude our analysis by studying the clustering
coefficient.

Theorem 4 If f̄(·, t) ≤ 1, then C(Gtm)→ 0 for graph
Gtm generated from the PAGA model, where the clus-
tering coefficient is defined as:

C(G) =
3×Number of triangles in G

Number of triplets in G

4 Experiments

In the following, we perform experiments to demon-
strate the potential of PAGA to generate graphs
matching the patterns occurring in natural networks.
Please note that the aim of this section is not to de-
rive the affinity function f best representing a given
graph, but to empirically analyze the properties of
PAGA graphs. While we discuss a principle to esti-
mate f based on observed data in Section 5, in this
part we focus on the following instantiation:

f(u, v) = [π ·B · π]u,v (12)

where π is a permutation matrix and B is a block-
diagonal matrix with k homogenous blocks. That is,

B := c1 · 1n1
⊕ . . .⊕ ck · 1nk

(13)

with ⊕ being the direct sum and 1n the all-ones matrix
of size n× n.

Effectively, this definition models a graph with k com-
munities, each of size ni, where the function f(u, v)
evaluates to ci if both u and v belong to community
i, and zero if they belong to different communities.
Thus, for ci > 0, higher affinity is obtained for nodes
within the same community.

In our following experimental analysis (and likewise in
Figure 2), we select k = 10, equally sized communities,
and ci = 4.8 for all i. Based on the definition of f , this
leads to a value of f̄(·, t) = 0.48 and, thus, to a power-
law exponent of 2.48 as already shown in Figure 2.
By using non-equally sized communities and varying
values of ci, the behavior in Figure 1 can be obtained.

4.1 Empirical Analysis of Graph Properties

Degree distribution: The crucial characteristic of nat-
ural graphs is their power-law degree distribution, i.e.
the number of nodes Nk with degree k is given by
Nk ∝ k−θ. Power law degree distributions have been
observed in multiple domains [13, 38, 39] with expo-
nents in the range 2.1 to 2.5. As proven in Theorem 1,
PAGA ensures power-law distributions, with an exam-
ple illustrated in Figure 2 (bottom right).

Besides the degree distribution, multiple other prop-
erties of natural graphs have been observed. In the
following, we review the most prominent properties,
we illustrate them exemplary on real networks, and
we show that PAGA models similar properties. While
Figure 3 analyzes properties referring to a single graph,
Figure 4 compares statistics across multiple graphs.

Triangle counts: For natural graphs, it has been ob-
served that the distribution representing the number
of triangles x versus the number of vertices participat-
ing in x triangles is skewed [40].
Network value: The first/largest eigenvector of a
graph, or more precisely the distribution of its com-
ponents, is also known to be skewed [41].
Scree plot: The scree plot – illustrating the eigenval-
ues of the graph’s adjacency matrix versus their rank
in logarithmic scale – is also found to approximately
follow a power law [41, 42].

Figure 3a-c illustrates these properties. As a represen-
tative, the top row shows the statistics derived from
the Autonomous systems available at the Stanford Net-
work Analysis Project (SNAP) [37]. The bottom row
corresponds to PAGA. Clearly, the behavior matches.

Small Diameter: Small diameters (also known as the
“small-world” phenomenon or “six degrees of separa-
tion” [43]) are ubiquitous in natural graphs. The di-
ameter is the smallest number x such that every pair of
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Figure 3: Properties of a real graph (top) and of PAGA (bottom). The real graph Autonomous systems [37] has
6474 nodes and 13895 edges. Without any fitting, PAGA reports mean statistics over 10 randomly generated
graphs of 10k nodes and 50k edges with community affinities as stated in the beginning of Sec. 4. As shown,
Autonomous systems and PAGA show similar skewed distributions on triangle, eigen values and eigenvector.

nodes can be connected by a path of at most x edges.
Since the diameter is not robust to outliers, we refer
to the effective diameter [44]. It corresponds to the
minimum number of hops, in which a fraction (usually
90%) of all connected pairs of vertices can reach each
other. Multiple studies [45, 43, 37] have observed small
effective diameters in large natural graphs. Extending
the idea of the diameter, a hop plot illustrates the num-
ber g(h) of vertex pairs reachable within h hops [46].

The hop plot for a single graph is illustrated in Fig-
ure 3d, again showing the good fit of PAGA to the
naturally occurring property. Similarly, we observe
in Fig. 4 that the effective diameter across multiple
graphs of different sizes is well represented by PAGA:
In the figure, the top row shows statistics on more than
200 graphs from the KONECT website [47]. The red
line in the top left figure indicates the average effective
diameter of 5.1 across all graphs. In the bottom, the
effective diameter of the PAGA graphs varying the size
of the graphs is shown. With a value of 5, it is very
close to the real graphs.

Finally, Fig. 4b confirms that also the overall number
of triangles present in graphs generated by the PAGA
model behave similar to natural graphs.

In summary, besides our analytical analysis, the empir-
ical analysis supports that the PAGA model captures

important properties of natural graphs. The prefer-
ential attachment strategy in combination with vertex
affinity based on f realizes a flexible model. Next, we
discuss how to estimate f based on observed data.
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577



Preferential Attachment in Graphs with Affinities

5 Learning f

The affinity function f plays a crucial rule in our
model. To mimic the behavior of real graphs, we will
propose an efficient algorithm for learning f based on
observed data. For this purpose, we assume a graph is
given where nodes are enriched by vertex attributes,
reflecting the various properties used, e.g., in link rec-
ommendation algorithms such as gender or age. Tech-
nically, we operate on the graph G = (V,E, l) with
vertices V , edges E, and labeling function l : V → Rd
mapping each vertex to a d-dimensional feature vector.

Our goal is to estimate f such that high affinity is ob-
tained for adjacent nodes, while low affinity for non-
adjacent nodes. This problem naturally casts to a bi-
nary prediction problem; consequently, we model it via
a logistic regression approach, simultaneously ensuring
efficient learning.

More precisely, we define f as f(u, v) = σ(g(u, v)) with
σ being the sigmoid function and

g(u, v) = l(u)T ·W · l(v) (14)

The matrix W captures the effects between the fea-
tures’ dimensions. In particular, in the case of (bi-
nary) feature vectors representing class memberships,
one might interpret large diagonal entries in W as ho-
mophily within a class, while off-diagonal entries rep-
resent heterophily. Similarly, negative entries corre-
spond to repulsion between different classes.

To learn W we refer to logistic regression, where the
label for a pair of features is 1 if (u, v) ∈ E, and 0 oth-
erwise. We add an L1 regularizer to enforce sparsity
of the final matrix.

5.1 Case study on a citation network

In the following, we illustrate the potential of this
learning method based on a document citation network
(the high-energy physics theory citation network avail-
able from SNAP). We argue that the documents top-
ics’ are a leading factor for link establishment. There-
fore, we exploit the documents’ topic distributions as
node features l(u) : we applied LDA, parametrized
with 50 topics, on the papers’ abstracts, leading to
50-dimensional feature vectors for each document.

Intuitively, since papers from the same topic more
likely cite each other, we should observe high diago-
nal entries in W . A plot of W shown in the appendix
confirms this hypothesis: most of the diagonal entries
are positive with a high magnitude. Notably, some of
the topics are less important for link establishment.
In particular, topics covering very general terms (like
topic 9 with “form, general, parameters, arbitrary”)
are less informative for the link establishment.
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Figure 5: The red dots indicate a real citation network
and the blue dots a PAGA graph fitted by learning the
affinity function f . In (a), the real graph has a power-
law degree distribution of 3.12 vs. the PAGA graph
with 2.97. The total triangle count in (b) is 1.49m for
the real graph and 1.44m for the fitted graph.

Given the learned function f , we show that realistic
graph properties are obtained. Note that for this pur-
pose we rescale the function f such that the value of
f̄(·, t) reflects the power-law exponent of the observed
data. We then generate a graph according to PAGA,
processing the documents and their corresponding fea-
ture vectors in the sequence of their publication time.
As shown in Fig. 5, the properties of the real graph
are very well matched by the generated counterpart.

6 Conclusion and Future Work

We proposed a random graph model combining the
idea of preferential attachment and vertex affinity. By
allowing local variations of the affinity between nodes,
our model ensures more flexible power-law degree dis-
tributions and it captures local properties such a com-
munity structure. We analytically proved important
structural properties of the generated graphs and we
empirically showed that various further properties are
well matched.

As future work we plan to develop an affinity learning
technique handling very large graphs and we aim to
estimate the sequence in which nodes and links have
been added to an observed graph.
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