
mTunes: Efficient Post-Silicon Tuning of Mixed-Signal/RF
Integrated Circuits Based on Markov Decision Process

Manzil Zaheer and Fa Wang
ECE Department, Carnegie

Mellon University
Pittsburgh, PA 15213

{manzil, fwang1}@cmu.edu

Chenjie Gu
Strategic CAD Labs, Intel

Corporation
Hillsboro OR 97124

chenjie.gu@intel.com

Xin Li
ECE Department, Carnegie

Mellon University
Pittsburgh, PA 15213

xinli@cmu.edu

ABSTRACT
Uncertainty prevails in IC manufacturing and circuit operation.
In particular, process variability has a huge impact on circuit
performance, especially for mixed-signal/RF circuits, leading to
unacceptable yields. Additionally, environmental uncertainties,
such as temperature fluctuation and channel variation, further
deteriorate performances in field. To combat variability, circuits
are often made reconfigurable by adding tunable knobs to recover
circuit performance in the post-manufacturing stage. However, as
the number of knobs increases, knob tuning becomes challenging
due to the huge search space. In fact, knob-tuning policies can have
an observable impact on final performance and power consumption.
In this paper, we propose mTunes, a method based on the Markov
decision process for dynamically choosing the “right” knob tuning
sub-routine from a pre-defined set achieving a balance between
performance and power constraints. The proposed method has
been applied to a reconfigurable RF front-end design, showing 60%
improvement in yield compared to static tuning policies.

1. INTRODUCTION
Variability is prevalent during IC manufacturing and circuit

operation. In particular, process variation keeps increasing as the
transistor size scales [1]–[2]. This can be attributed to physical
and fabrication limitations such as “under-etching uncertainties,
variations of effective transistor dimensions, severe channel length
modulation due to higher electric fields, and channel dopant
fluctuations” [3]. Moreover, from the perspective of analog circuits,
the technology scaling is accompanied by adverse effects such
as lower transistor output impedances, reduced transistor linearity
and limited voltage headroom. [4]. In post-manufacturing, the
IC will be interconnected with a variety of peripherals (such as
different boards, memory cards, wireless channels), each affecting
the circuit performance in a different manner. Temporal variations
such as temperature and voltage fluctuations further deteriorate
circuit performance and power consumption.

This has made the design of high-performance analog/mixed-
signal/RF circuits extremely challenging as their performances
heavily depend on matched devices and differential signal paths,
and are especially sensitive to even the slightest perturbation.
Moreover, a major use of analog/mixed-signal/RF circuits is in
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wireless mobile products. In such mobile applications, circuit
design with low power consumption is vital, thus compounding
the problem. As a result, increasing process variation of smaller
process nodes, together with environmental variation and noise,
leads to diminishing yields and reliabilities of chip designs.
Ensuring that the performances of an analog/mixed-signal/RF
system meet the design specifications has become increasingly
challenging.

To handle these challenges, circuit designers have traditionally
resorted to conservative circuit design approaches, trading off

some performance for higher yields and better variation tolerance.
Recently, two methods have been proposed to combat these
challenges, namely post-production performance calibration [5]–
[7] and self-healing [8]–[10]. They allow more aggressive circuit
specifications to be achieved, while maintaining expectations of
high yield. Fundamentally, both methods employ a set of tunable
components (or knobs) in the design for calibrating performance
of the system. In post-production performance calibration, after
manufacturing the knobs for failing dies are fine-tuned so that
their performances meet the design specifications. This way,
some dies that would have been directly thrown away under the
traditional analog testing procedure can now be salvaged, thereby
recovering yield. In self-healing, along with tunable knobs, on-
chip sensors are also added. Such a design constantly monitors the
system performance and employs subsequent on-chip correcting
mechanisms by tuning the knobs using an optimisation algorithm.
This not only allows the system to correct for process variability,
but also provides enhanced resilience to environmental variations.

In both methods, the crux lies in the proper tuning of the knobs.
With increasing system complexity, more knobs are added for often
conflicting purposes (e.g., performance and power). Since the
search space in the knob space is huge, global optimisation over all
knob values is infeasible. Rather, a single knob or a group of small
number of knobs are tuned sequentially as part of the system-level
calibrations. In this case, the order in which tuning of knobs is
carried out is very important as typically the objective function is
not convex. Because it can happen that tuning one knob first can
lead the system into a valley of local optima thus compromising
achievable performance, power or pass/fail in the testing phase,
whereas tuning in another order leads to a better optima. Thus
proper selection of the order in which to tune the knobs is extremely
crucial.

In this paper, we propose to borrow the idea of Markov
Decision Process (MDP) [11]–[14] from the machine learning
community and develop a new algorithm, mTunes to overcome the
aforementioned technical challenges. In particular, we consider
a self-adaptive design where the tuning knobs are adjusted
sequentially, and we focus on the problem of how to order the
knob tuning sequence for minimum power consumption under
performance constraints. This is achieved by first modelling the
uncertainty (e.g., from process variation) and the dynamics of



tuning individual knobs using a Markov model. With this, mTunes
dynamically selects the “best” subsequent knob to tune based on
configuration of current knob settings, using a reward function
specifically designed to balance the conflicting performance
specifications and power consumption. Mathematically, mTunes
selects the knob to optimise the reward function, in expectation,
and this can be efficiently done using a dynamic programming
formulation. Such design is different from conventional methods
for system-level calibration which employs a fixed, deterministic
ordering of the tuning knob selection. It is also important to note
that mTunes introduces few design overhead because it does not
require any additional sensor/information other than value of all
the current knob settings. Our experimental results in Section 4
demonstrate that mTunes can increase the yield by up to 60% while
maintaining similar power requirements, compared to a fixed order
knob tuning.

Outline: The rest of the paper is organized as follows. We
begin by formally describing the problem statement and provide an
overview of MDP for tackling the problem in Section 2. This lays
the foundation for the proposed knob tuning algorithm selection
method, for which detailed implementation details are given in
Section 3. In Section 4, we demonstrate that efficacy of the
proposed approach through simulation showing more than 2×
increase in yield. Finally, we conclude in Section 5.

2. PROPOSED APPROACH

2.1 Problem Formulation
In this paper, we target the problem of knob tuning in a

reconfigurable circuit so that it meets the design specification. Let
there p performance metrics in the specification; denote by m j the
value of performance metric and by Λ j specification of that metric.
Also by m0 denote the power consumed by the circuit. Also let
there be l knobs in the circuit and denote by ki the value taken by
knob i from some set Ωi for each i = 1, 2, ..., l.

The goal is to tune all the knobs (k1, k2, ..., kl), such that all
performance metrics meet the specifications, i.e. ∀ j : m j ∈ Λ j,
while minimizing the power. As stated earlier, global optimisation
of all the knobs (k1, k2, ..., kl) is infeasible due to extremely large
search space. Rather the designers provide a bag of algorithmA for
taking the knobs and each algorithm a ∈ A tunes one knob or some
small number of knobs at a time. Also we have a budget, T , of how
many algorithms we can choose to run. So the objective becomes
to pick these algorithm in correct order - the importance of correct
order under limited budget can be understood by considering the
following example.

Consider a simple problem where we have two knobs and two
tuning algorithms - the first (second) tuning algorithm sweeps the
first (second) knob, keeping the second (first) knob constant to find
the configuration which minimizes some cost function. Also we are
given a budget of running 2 algorithms at most. Suppose the cost
function has contour plot as shown in Fig. 1. Also assume that we
start by setting knobs to (1, 1). Now if our policy is to tune knob
1 first, then we will get stuck at a local optima. Whereas by first
tuning the knob 2, we can reach the state of global optima. With
larger number of knobs and tuning algorithm, the problem enters
the realm of high-dimensionality and selection of correct tuning
algorithms order becomes non-trivial.

2.2 Assumptions
In order to tackle the problem described, we make an assumption

that for a given circuit, all the performance metrics depend only
on the knob configuration, i.e. for each chip there exists function

f j :
⊗

i Ωi → R such that:

m j = f j(k1, k2, ..., kl). (1)

This means knowledge of (k1, k2, ..., kl) completely describes the
state of the system. Under this setting notice that running any
tuning algorithm a ∈ A will result in the following transition:

(k1, k2, ..., kl)
a

−−−−−→ (k+
1 , k

+
2 , ..., k

+
l ). (2)

So the next state of the system only depends on the present knob
setting and the action taken, not on any historical configuration or
operations. Thus the setup obeys Markov property perfectly. We
can exploit this Markovity, in selecting the best order in which to
execute the tuning algorithms.

However, note that the functions { f j} will be different for each
chip, attributed to many sources of variability as enlisted in the
introduction. Due to this variability, the next state into which
the system will transition upon application of a tuning algorithm
becomes uncertain across chips. For this purpose we borrow the
idea of MDP from machine learning community. A MDP is simply
a tool to plan efficiently if the results of actions executed are
uncertain. which we will describe next.

2.3 Markov Decision Process
Firstly, MDP is a Markov model. A Markov modelling

scheme is applied to scenarios where the environment evolves
in a memoryless fashion. In other words, it can be used to
model random environments that change states according to some
transition rule that only depends on the current state. Second
aspect of MDP is the possibility to make decisions. Basically, in
many situations we have the flexibility to respond to the random
environment by taking suitable actions. However, the environments
response to the action can have randomness in it. In this setting,
the Markov property translates to the state transition rule/function
probabilistically specifying the next state of the environment to
depend on its current state and the action.

Formally, MDP is a 4-tuple Ξ = (S,A,R,T ), defined as:

• S is the set of states in the system. At every instant, the
system must be one of the state s ∈ S. For the problem
in consideration configuration of tuning knobs will form the
state space as will be explained in Section 3.

• A is set of actions which the agent can execute and at each
time step we can choose to take one of the action. This will
correspond to the bunch of tuning algorithms at our disposal.

• R : S × A × S → R is a set of reward functions {r1, ..., rt}.
They specify the expected instantaneous reward as a function
of the state transition and action taken.
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Figure 1: A synthetic example to motivate the fact that ordering of
tuning algorithm is important. Here an exemplary cost function is
shown, and for the given starting point if we first tune the knob 2
then we can reach a global optima whereas tuning knob 1 first will
lead us to get stuck at a local optima.



• T : S × A → Π(S) is the conditional transition probability
of moving to a new state S t+1 ∈ S given current state S t ∈

S and action At ∈ A. This can be represented as a tensor
τ(s, a, s+) = P(S t+1 = s+|S t = s, At = a).

Under assumptions of this model, the system evolves as follows:
at each time point, the system is in a particular state, s, an action
a is taken and there is a transition to another state s+. However,
we require that the state transition depend only upon s and a. In
addition, s and a only give probabilistic information about what
the resulting state will be according to T . Also suppose the system
has a finite lifetime T , in which case it is termed as a finite horizon
MDP. Having described all the quantities of interest, the intention
is to find a policy, mapping states to actions, that will maximizes
our over-all rewards. So, starting from some state S 0 = s at time
t = 0, we want to find the policy π∗ = (π0, π1, ..., πT−1), πt ∈ A

|S,
that indicates the algorithm to run when we are in state S t at time t
so as to maximize our expected rewards, i.e.

π∗ = argmax
π∈A|S|T

E

T−1∑
t=0

Rt(S t, πt(S t), S t+1)

∣∣∣∣∣∣∣S 0 = s, π

 . (3)

We will next describe a technique for efficiently determining this
optimal policy given the correct model Ξ.

2.4 Value Iteration
We will provide here details for finite horizon value iteration for

Markov Decision Process for completeness, because its details are
not as easily accessible as its infinite horizon counterpart.

Begin by defining, the Q-function as:

Qi(s, πi:T−1) = E

 T∑
t=i

rt(S t, πt(S t), S t+1)

∣∣∣∣∣∣∣ S i = s, πi:T−1

 . (4)

By simple manipulations and using linearity of expectation, we can
get the recursion:

Qi(s, πi:T−1) = E [ri(s, πi(s), S i+1) + Qi+1(S i+1, πi+1:T−1)]

=
∑

s+

τ(s, πi(s), s+)
(
ri(s, πi(s), s+) + Qi+1(s+, πi+1:T−1)

)
. (5)

Then the value function defined as:

v∗t (s) = max
π∈A|S|(T−t)

Qt(s, πt:T−1), (6)

along with (5) yields the famous Bellman equation [11]:

v∗t (s) = max
πt(s)∈A

∑
s+

τ(s, πt(s), s+)
(
rt(s, πt(s), s+) + v∗t+1(s+)

)
. (7)

Now to solve for the value function, a dynamic program can be
constructed as shown in

Thus we can see that computational complexity of the value-
iteration algorithm is in general quadratic in the number of states
and linear in the number of actions. Commonly, the tensor τ is
sparse and if there are on average a constant number of next states
with non-zero probability (as will be in our case) then the cost per
iteration is linear in the number of states and linear in the number
of actions. We will now use this machinery in finding the optimal
order for executing tuning knob algorithm.

3. IMPLEMENTATION DETAILS
In this section, we describe the proposed mTunes method. In

particular, we first explain the modelling using MDP and obtaining
the optimal policy. Subsequently, we delve into integration of this
policy for knob tuning algorithm selection.

Algorithm 1 Finite Horizon Value Iteration
Input: The Markov model Ξ

Output: Optimal policy π∗

1: Initialize v∗T (s)← 0 for all s ∈ S.
2: for t = T ↓ 1 do
3: for s ∈ S do
4: for a ∈ A do5:

Q(s, a) =
∑

s+

τ(s, a, s+)
(
rt(s, a, s+) + v∗t+1(s+)

)
6: end for
7: v∗t (s) = maxa∈A Q(s, a)
8: π∗t (s) = argmaxa∈A Q(s, a)
9: end for

10: end for

3.1 Markov Modelling
Often circuits, especially analog and mixed signal circuits,

are represented by response surface models (RSM) and thus
abstracting away the internal circuit details. This enables us to
expedite design and analysis by providing a fast and accurate
way to evaluate system performance. There are several known
methods to build RSM for circuit performance, e.g. empirical
model, regression model (polynomial,etc.), neural nets, fuzzy
logic. [15]–[20]

In our proposed approach we first of all pick any desired RSM
for each nominal performance metric of interest. Then using
simulation data, we fit the nominal case model for all performance
metrics, i.e. for each j = 1, 2, ..., p we obtain:

m j = f̄ j(k1, ..., kl). (8)

From this we can see that performance of the system can
be completely described by the knob values, according to our
assumption. Thus we can denote the state s of the system by
s = (k1, ..., kl) and S =

⊗
i Ωi.

Now under “perfect” nominal conditions, application of any
tuning algorithm will result in a deterministic behaviour. In other
words, if the system is any state s ∈ S at time t, then application
of any tuning algorithm a ∈ A will lead to some new state s+

deterministically, i.e.

P(S t+1|S t = s, At = a) =

1 if S t+1 = s+

0 else.
(9)

However, perfect nominal condition is never a reality, the chip
will be subject to process and environmental variability. So, ideally
each chip will have its own function f̃ j for each performance metric.
We approximate this to first order by claiming that, for all chips we
have:

f̃ j = f̄ + ε j, (10)

where ε j are independent random variables capturing the
variability. The statistics of ε j can be obtained by running Monte-
Carlo simulation and designer’s advise can be used to make it more
accurate.

Under this scenario, application of tuning algorithm will not
result in deterministic behaviour. Because, different dies under
different process variation and environmental condition can have
different response f̃ j and so the underlying optimisation in the
tuning algorithm can lead to different knob configurations.

Thus P(S t+1|S t, At) can now have multiple non-zero entries. Now
to estimate the tensor τ(s, a, s+) = P(S t+1 = s+|S t = s, At = a), we
use the first order approximation of (10) and the learnt statistics of
ε j. With this information, each of the entries of τ can be estimated
using direct maximum likelihood estimation (MLE). Also we can
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Figure 2: Two possible cost functions – step and smooth –
associated with a performance metric is shown. It is assumed that
according to design specification the performance metric should be
less than σ j.

assume our favourite distribution form, like Gaussian Mixture
Model (GMM) for τ(s, a, ·) and fit that using the Monte-Carlo
simulation data.

3.2 Reward Function Design
As explained in the introduction, raison d’être of tunable knobs

is to improve the yield by adjusting knobs so as to meet the
specifications. The tuning should be performed such that chip
should meet the specifications at the end. In terms of MDP
framework, we should reward transitions such that we end up in
a state/knob configuration where performance metrics meet the
specifications. Also during the intermediate steps we do not care
if specifications are met or not. This hints at setting rt ≡ 0 for
t = 0, 1, ...,T − 2. Otherwise, if we provide instantaneous rewards,
it can greedily take steps which end up in a local optima.

Next, once the specifications are met, it is of not much value
to exceed them. Rather, it is much more useful to reduce
power consumption as much as possible, while respecting the
specifications. So, we choose the following reward at the end:

rT−1(s, a, s+) = r(s+) = − f0(s+) −C
p∑

j=1

I{ f j(s+) < Λ j} (11)

This reward function basically rewards more to enter a final state
with a lower power requirement and penalize heavily if any of the
performance metric does not meet the specification. Amount of
penalty is controlled by the constant C.

However, such a reward function provides no indication about
the system reaching close to specification boundary during the
training procedure. By making the transition around specification
from zero penalty to high penalty a smooth function, we get two
fold benefits. Firstly, we can get an indication about reaching near
the edge of feasible region. Secondly, this helps in leaving margin
to accommodate fluctuations due to variability. For example, if
for a performance metric m j, the specification is Λ j = (−∞, σ j],
i.e. the performance metric m j has to be less than or equal to σ j.
In this example, the cost associated with m j in (11) is depicted
in Figure 2a. The corresponding smooth version is shown in
Figure 2b. We will see that using the smoother variant leads to
a better performance of mTunes in Section 4.

Now, we have specified the entire model Ξ for MDP. Using value
iteration algorithm as described in Section 2.3, we can obtain the
optimal policy π∗. This would conclude the off-line computations
involved in mTunes. Next we discuss, how to use the obtained
policy π∗ in selection of sub-routines during the actual tuning of
the chip.

3.3 System Integration
Our proposed method does not require much deviation from

current paradigm of reconfigurable circuits. Currently, the
reconfigurable systems are designed and tuned as depicted in

System
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Figure 3: A schematic representing the general architecture of
reconfigurable circuits. We highlight that in proposed method,
one can move from static fixed tuning policy to dynamic state
dependent policy by just adding a feed-back from the present knob
value.

Fig. 1a. The system will have l tunable knobs. There is a bunch of
tuning algorithms, which control (a subset of) the knobs and receive
feedback from the system in terms of some performance metrics,
probably using some on-chip sensors. There is a pre-determined
and fixed policy/order in which these algorithms are executed. The
order is stored in the policy block. [8]–[9]

We propose to introduce a feedback to the policy block from the
knob configurations and make the policy block contain the MDP
based optimal policy π∗. This can be stored in as a look up table
or implemented via digital logic. Our proposed approach work
will work as follows. Based on the knob configuration and budget
remaining, the policy block will look up the π∗t to determine which
tuning algorithm to run. Then this algorithm is executed. This will
result in the knobs being changed. After the algorithm finishes,
based on the new knob settings the process is repeated till the
budget is exhausted. This procedure is summarized in Algorithm 2.

Algorithm 2 MDP Based Tuning Algorithm Selection

1: Initialize knobs to s = (k0
1, ..., k

0
l ).

2: for t = 1→ T do
3: Find the algorithm to run, i.e. a← πt(s).
4: Execute the tuning algorithm a. Within this tuning algorithm

a, optimal knob values are chosen based on some subset
(possibly all) of performance metrics.

(k1, k2, ..., kl)
a

−−−−−→ (k+
1 , k

+
2 , ..., k

+
l )

5: This cause a state transition to a new state s = (k+
1 , k

+
2 , ..., k

+
l ).

6: end for

Note that our proposed approach is indifferent to the
implementation and details of the various tuning algorithms in A.
In other words, the working mTunes does not depend on how
the tuning algorithms select the optimal knobs, what is the cost
function they use or which subset of performance metrics do they
measure. Thus, showing the generality of our proposed approach.

4. EXPERIMENTS

4.1 Setup
In this section as a proof-of-concept, two versions – high-

performance and low-power – of a reconfigurable RF front-end
example designed in a GPDK 45nm CMOS process is considered.
It is used to demonstrate the efficacy of the proposed method
by comparing against a baseline, with a fixed order of executing
tuning algorithms. The schematic of the RF front-end is shown
in Fig. 4. It consists of two components: a tunable LNA
and a tunable down-conversion mixer. The tunable LNA is a
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Figure 4: Schematic of a simple 2.4 GHz reconfigurable RF
receiver

cascade of three stages where the bias current of each stage can
be independently controlled by a 4-bit digital-to-analog converter
(DAC). The tunable down-conversion mixer also includes two
control knobs, each tuned by a 4-bit DAC. The two control knobs
independently tune the bias current and load resistance of the mixer.

In total the system has l = 5 knobs, each taking values among 16
possibilities. There are p = 3 performances of interest for this RF
front-end example, they are listed in Table 1 along with their design
specifications for both low-power and high-performance versions.

We consider a budget of T = 5 tuning steps and |A| = 5
tuning algorithms, one for each knob. The operation of each tuning
sub-routine is straightforward: it sweeps one of the knobs, while
keeping the rest fixed. Consequently, it selects the knob value
that maximizes the following function of performance metrics of
interest:

r(s) = − f0(s) − 1000
p∑

j=1

I{ f j(s) < Λ j}, (12)

where s = (k1, ..., kl). This function basically selects the knob
value corresponding to lowest power consumption while meeting
the specifications. If none of the knob values meet the specification,
it adds a big penalty and still selects the knob setting consuming
least power.

We compare the proposed approach, mTunes, with a baseline
approach for knob tuning. The only difference in the two methods
lies in deciding the next tuning step. In baseline approach, we
assume that the tuning algorithm are invoked sequentially in the
natural order, i.e. 1, 2, 3, 4, 5. While, in the proposed approach,
to re-emphasize, we use an adaptive state dependent policy where
the next tuning algorithm to invoke is decided based on the current
state. Next we describe exactly how we learnt the policy for the
circuit in consideration.

4.2 Fitting mTunes
For this example, we use a full quadratic RSM for all the

performance metrics. Since there are l = 5 knobs, the model has(
l+2
2

)
= 21 coefficients for each performance metric. We fit this

model by carrying simulations under nominal conditions for 1315
knob configurations. These knob configurations are obtained by
using D-optimal design of experiment.

Next, we run 1315 Monte-Carlo simulation with random knob
configurations to obtain the statics of ε j. Using this and first order
approximation of the variations in circuit performance metric, we

Table 1: Specifications

Metric Low-Power High-Performance

Voltage gain (VG) ≥ 35 dB ≥ 36 dB

Noise Figure (NF) ≤ 7 dB ≤ 6 dB

Input referred 1 dB com-
pression point (1dBCP)

≥ −39 dB ≥ −36 dB

Table 2: Results for Low-Power Version

Metric Baseline mTunes I mTunes II

Voltage gain 38.12 dB 36.46 dB 36.59 dB

Noise figure 6.910 6.867 6.887

1dBCP -39.09 dB -33.45 dB -33.85

Power 22.23 mW 20.98 mW 20.97 mW

Yield 40.04% 100% 100%

Table 3: Results for High-Performance Version

Metric Baseline mTunes I mTunes II

Voltage gain 38.17 dB 36.06 dB 36.88 dB

Noise figure 5.921 5.784 5.782

1dBCP -38.86 dB -32.64 dB -34.01 dB

Power 25.74 mW 26.36 mW 26.41 mW

Yield 0.00% 86.07% 91.52%

estimated the transition probability tensor τ̂ by direct maximum
likelihood estimation. With this the MDP model, Ξ̂ is complete,
and we run the value iteration algorithm with reward function in
(11) with C = 1000 and its smoothed counter part to obtain the
optimal policies.

4.3 Evaluation
The two methods are evaluated on 512 dies by Monte-Carlo

simulations for both low-power and high-performance versions.
Additionally, for mTunes we have two implementations, first one
using policy obtained by the step reward function (11) and the
second using its smoothed variant.

The tuning procedure is carried out as follows: We begin by
setting initially all knob values to the minimum possible setting.
Then we have to decide which knob to be tuned. In case of baseline,
we simply start by tuning the first knob, while for mTunes we use
the policy to determine the knob to be tuned. Then as described
in the setup, the tuning is carried out by sweeping through all the
values of the chosen knob and obtaining the performance metrics
at each setting. We try to find a knob value that minimizes power
while meeting the specifications on other performance metrics. If
none of them meets the specification, add large penalties as can be
seen from (12). By choosing the best knob value thus, we transition
into a new state. The process is repeated 5 times.

The average performance metrics, power consumption and yield
obtained at the end of tuning procedure are reported in Table 2 and
3. Note that we selected objective function for tuning algorithms
to be same as the reward function of MDP for a fair comparison
between the two.

4.4 Analysis
Studying Table 2 and 3 reveals several important observations.

First, it appears that baseline unnecessarily exceeds design
specifications for some of the metrics and for others cannot even
meet the specifications. In particular, the baseline achieves more
than required gain and thus struggle in obtaining high input
referred 1 dB compression point. Also, such behaviour leads to
higher power consumption and low yield. To explore this further
we plotted a representative the trajectory of performance metrics
evolution after each training step in Figure 5 for both the baseline
and proposed mTunes. Second, but more importantly, the proposed
mTunes is able to balance between all the performance metric and
achieve high yield, upto 100%, while at the same time reducing
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Figure 5: As an example, a plot showing trajectory of performance
metric evolution with each tuning step using baseline and mTunes
for one chip is presented. Here normalized version is plotted to fit
different performance metrics in the same scale. The voltage gain
(VG) should be larger than 1 while noise figure (NF) and 1dBCP
should be smaller than 1 to meet the specifications.

power consumption by upto 5% compared to the baseline.
Finally, it is worth mentioning that all the computations for

mTunes, e.g. the model training, evaluating the optimal policy etc.
are done in advance. Hence, it does not increase the tuning/test cost
after the chip is manufactured.

5. CONCLUSION
In this paper, a novel mTunes approach based on MDP is

proposed for efficient knob tuning in reconfigurable analog and
mixed-signal circuits. Built upon MDP, mTunes can generate a
dynamically optimal tuning scheme to improve parametric yield
with low tuning/testing cost. The proposed mTunes approach
has been validated on a 2.4GHz reconfigurable RF receiver front-
end, through extensive simulations. Our experimental results
demonstrate that mTunes consistently out-performs conventional
fixed order tuning approach by more than 2x improvement in yield.
The aforementioned yield increase can be directly translated to a
valuable cost reduction for high volume analog and mixed-signal
circuit production.

As future works we wish to reduce number of samples required
by employing tricks like Bayesian Model Fusion [6] to incorporate
data from past measurement or from similar system obtained
through previous simulations or previous stepping of similar
products. Also we would like to handle the problem of state space
explosion due to curse of dimensionality. One possible way could
be through embedding into reproducing kernel Hilbert space [21].
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