
Exponential Stochastic Cellular Automata
for Massively Parallel Inference

Manzil Zaheer Michael Wick Jean-Baptiste Tristan Alex Smola Guy L Steele Jr
Carnegie Mellon Oracle Labs Oracle Labs Carnegie Mellon Oracle Labs

Abstract
We propose an embarrassingly parallel, mem-
ory efficient inference algorithm for latent
variable models in which the complete data
likelihood is in the exponential family. The
algorithm is a stochastic cellular automaton
and converges to a valid maximum a poste-
riori fixed point. Applied to latent Dirichlet
allocation we find that our algorithm is over
an order or magnitude faster than the fastest
current approaches. A simple C++/MPI im-
plementation on a 4-node cluster samples 570
million tokens per second. We process 3 bil-
lion documents and achieve predictive power
competitive with collapsed Gibbs sampling
and variational inference.

1 Introduction

In the past decade, frameworks such as stochastic gra-
dient descent (SGD) [28] and map-reduce [8] have en-
abled machine learning algorithms to scale to larger
and large datasets. However, these frameworks are not
always applicable to Bayesian latent variable models
with rich statistical dependencies and intractable gra-
dients. Variational methods [15] and Markov chain
Monte-Carlo (MCMC) [10] have thus become the sine
qua non for inferring the posterior in these models.

Sometimes—due to the concentration of measure
phenomenon associated with large sample sizes—
computing the full posterior is unnecessary and maxi-
mum a posteriori (MAP) estimates suffice. It is hence
tempting to employ gradient descent. However, for
latent variable models such as latent Dirichlet alloca-
tion (LDA), calculating gradients involves expensive
expectations over rich sets of variables [27].

MCMC is an appealing alternative, but traditional al-
gorithms such as the Gibbs sampler are inherently se-

Preliminary work. Under review by AISTATS 2016. Do
not distribute.

quential and the extent to which they can be paral-
lelized depends heavily upon how the structure of the
statistical model interacts with the data. For instance,
chromatic sampling [11] is infeasible for LDA, due to
its dependence structure. We propose an alternate ap-
proach based on stochastic cellular automata (SCA).
The automaton is massively parallel like conventional
cellular automata, but employs stochastic updates.

Our proposed algorithm, exponential SCA (ESCA),
is a specific way of mapping inference in latent vari-
able models with complete data likelihood in the ex-
ponential family into an instance of SCA. ESCA has a
minimal memory footprint because it stores only the
data and the sufficient statistics (by the very definition
of sufficient statistics, the footprint cannot be further
reduced). In contrast, variational approaches such as
stochastic variational inference (SVI) [14] require stor-
ing the variational parameters, while MCMC-based
methods, such as YahooLDA [30] require storing the
latent variables. Thus, ESCA substantially reduces
memory costs, enabling larger datasets to fit in mem-
ory, and significantly reducing communication costs in
distributed environments.

Furthermore, the sufficient statistics dramatically im-
proves efficiency. Typically, updating a cell requires
first assembling the values of all the neighboring cells
before aggregating them into a local stochastic update.
In ESCA, the sufficient statistics adequately summa-
rize the states of the neighbors; the computational load
is small and perfectly balanced across the cells.

We demonstrate how ESCA is a flexible framework for
exponential latent variable models such as LDA. In
our experiments, we process over 3 billion documents
at a rate of 570 million tokens per second on a small
cluster of 4 commodity servers. That said, ESCA is
much more general. Table 1 explicitly lists some of the
more common modeling choices for which ESCA can
be easily employed. Our algorithm implicitly simu-
lates stochastic expectation maximization (SEM), and
is thus provably correct in the sense that it converges
in distribution to a stationary point of the posterior.

Manuscript under review by AISTATS 2016

Table 1: Examples of some popular models to which ESCA is applicable.

mix. component/emitter Bernoulli Multinomial Gaussian Poisson

Categorical Latent Class Unigram Document Mixture of
Model [9] Clustering Gaussians [22]

Dirichlet Mixture Grade of Membership Latent Dirichlet Gaussian-LDA [6] GaP Model [3]
Model [36] Allocation [2]

2 Exponential SCA

Stochastic cellular automata (SCA), also known as
probabilistic cellular automata, or locally-interacting
Markov chains, are a stochastic version of a discrete-
time, discrete-space dynamical system in which a noisy
local update rule is homogeneously and synchronously
applied to every site of a discrete space. They have
been studied in statistical physics, mathematics, and
computer science, and some progress has been made
toward understanding their ergodicity and equilibrium
properties. A recent survey [19] is an excellent intro-
duction to the subject, and a dissertation [18] contains
a comprehensive and precise presentation of SCA.

The automaton, as a (stochastic) discrete-time,
discrete-space dynamical system, is given by an evo-
lution function Φ : S −→ S over the state space
S = Z −→ C which is a mapping from the space of
cell identifiers Z to cell values C. The global evolution
function applies a local function φz(c1, c2, · · · , cr) 7→ c
s.t. ci = s(zi) to every cell z ∈ Z. That is, φ examines
the values of each of the neighbors of cell z and then
stochastically computes a new value c. The dynamics
begin with a state s0 ∈ S that can be configured using
the data or a heuristic.

Exponential SCA (ESCA) is based on SCA but
achieves better computational efficiency by exploiting
the structure of the sufficient statistics for latent vari-
able models in which the complete data likelihood is
in the exponential family. Most importantly, the lo-
cal update function φ for each cell depends only upon
the sufficient statistics and thus does not scale linearly
with the number of neighbors.

2.1 Latent Variable Exponential Family

Latent variable models are useful when reasoning
about partially observed data such as collections of
text or images in which each i.i.d. data point is a doc-
ument or image. Since the same local model is applied
to each data point, they have the following form

p(z,x, η) = p(η)
∏
i

p (zi, xi|η) . (1)

Our goal is to obtain a MAP estimate for the parame-
ters η that explain the data x through the latent vari-
ables z. However, in general all latent variables depend
on each other via the global parameters η, and thus the
local evolution function φ would have to examine the

values of every cell in the automaton.

Fortunately, if we further suppose that the complete
data likelihood is in the exponential family, i.e.,

p(zi, xi|η) = exp (〈T (zi, xi) , η〉 − g(η)) (2)

then the complete and sufficient statistics are given by

T (z,x) =
∑
i

T (zi, xi) (3)

and we can thus express any estimator of interest as
a function of just T (z,x). Further, when employing
expectation maximization (EM), the M-step is pos-
sible in closed form for many members of the ex-
ponential family. This allows us to reformulate the
cell level updates to depend only upon the sufficient
statistics instead of the neighboring cells. The idea is
that, unlike SCA (or MCMC in general) which pro-
duces a sequence of states that correspond to com-
plete variable assignments s0, s1, . . . via a transition
kernel q(st+1|st), ESCA produces a sequence of suf-
ficient statistics T 0, T 1, . . . directly via an evolution
function Φ(T t) 7→ T t+1.

2.2 Stochastic EM

Before we present ESCA, we must first describe
stochastic EM (SEM). Suppose we want the MAP esti-
mate for η and employ a traditional expectation max-
imization (EM) approach:

max
η

p(x, η) = max
η

∫
p(z,x, η)µ(dz)

EM finds a mode of p(x, η) by iterating two steps:

E-step Compute in parallel p(zi|xi, η(t)).
M-step Find η(t+1) that maximizes the expected

value of the log-likelihood with respect to the con-
ditional probability, i.e.

η(t+1) = arg max
η

Ez|x,η(t) [log p(z,x, η)]

= ξ−1

(
1

n+ n0

∑
i

Ez|x,η(t) [T (zi, xi)] + T0

)
where ξ(η)=∇g(η) is invertible as ∇2g(θ)�0 and
n0, T0 parametrize the conjugate prior.

Although EM exposes substantial parallelism, it is dif-
ficult to scale, since the dense structure p(zi|xi, η(t))
defines values for all possible outcomes for z and thus
puts tremendous pressure on memory bandwidth.

Manuscript under review by AISTATS 2016

To overcome this we introduce sparsity by employing
stochastic EM (SEM) [4]. SEM substitutes the E-
step for an S-step that replaces the full distribution
with a single sample:

S-step Sample z
(t)
i ∼ p(zi|xi; η(t)) in parallel.

Subsequently, we perform the M-step using the im-
puted data instead of the expectation. This simple
modification overcomes the computational drawbacks
of EM for cases in which sampling from p(zi|xi; η(t))
is feasible. We can now employ fast samplers, such as
the alias method, exploit sparsity, reduce CPU-RAM
bandwidth while still maintaining massive parallelism.

The S-step has other important consequences. Notice
that the M-step is now a simple function of current
sufficient statistics. This implies that the conditional
distribution for the next S-step is expressible in terms
of the complete sufficient statistics

p(zi|xi; η(t)) = f(zi, T (x, z(t))).

Thus each S-step depends only upon the sufficient
statistics generated by the previous step. Therefore,
we can operate directly on sufficient statistics with-
out the need to assign or store latent variables/states.
Moreover it opens up avenues for distributed and par-
allel implementations that execute on an SCA.

2.3 ESCA for Latent Variable Models

SEM produces an alternating sequence of S and M
steps in which the M step produces the parameters
necessary for the next S step. Since we can compute
these parameters on the fly there is no need for an
explicit M step. Instead, ESCA produces a sequence
consisting only of S steps. We require the exponential
family to ensure that these steps are both efficient and
compact. We now present ESCA more formally.

Define an SCA over the state space S of the form:

S = Z −→ K×X (4)

where Z is the set of cell identifiers (e.g., one per token
in a text corpus), K is the domain of latent variables,
and X is the domain of the observed data.

The initial state s0 is the map defined as follows: for
every data point, we associate a cell z to the pair
(kz, x) where kz is chosen at random from K and in-
dependently from kz′ for all z′ 6= z. This gives us the
initial state s0.

s0 = z 7→ (kz, x) (5)

We now need to describe the evolution function Φ.
First, assuming that we have a state s and a cell z, we
define the following distribution:

pz(k|s) = f(z, T (s)) (6)

Assuming that s(z) = (k, x) and that k′ is a sample
from pz (hence the name “stochastic” cellular automa-
ton) we define the local update function as:

φ(s, z) = (k′, x)

where s(z) = (k,x) and k′ ∼ pz(· |s)
(7)

That is, the observed data remain unchanged, but we
choose a new latent variable according to the distribu-
tion pz induced by the state. We obtain the evolution
function of the stochastic cellular automaton by ap-
plying the function φ uniformly on every cell.

Φ(s) = z 7→ φ(s, z) (8)

Finally, the SCA algorithm simulates the evolution
function Φ starting with s0.

As explained earlier, due to our assumption of com-
plete data likelihood belonging to the exponential fam-
ily, we never have to represent the states explicitly, and
instead employ the sufficient statistics.

An implementation can, for example, have two copies
of the data structure containing sufficient statistics
T (0) and T (1). We do not compute the values T (z,x)
but keep track of the sum as we impute values to the
cells/latent variables. During iteration 2t of the evo-
lution function, we apply Φ by reading from T (0) and
incrementing T (1) as we sample the latent variables
(See Figure 1). Then in the next iteration 2t + 1 we
reverse the roles of data structure, i.e. read from T (1)

and increment T (0). We summarize in Algorithm 1.

Algorithm 1 ESCA

1: Randomly initialize each cell
2: for t = 0→ num iterations do
3: for all cell z independently in parallel do
4: Read sufficient statistics from T (t mod 2)

5: Compute stochastic updates using pz(k|s)
6: Write sufficient statistics to T (t+1 mod 2)

7: end for
8: end for

Use of such read/write buffers offer a virtually lock-free
(assuming atomic increments) implementation scheme
for ESCA and is analogous to double-buffering in com-
puter graphics. Although there is a synchronization
barrier after each round, its effect is mitigated because
each cell’s work depends only upon the sufficient statis-
tics and thus does the same amount of work. There-
fore, evenly balancing the work load across computa-
tion nodes is trivial, even for a heterogeneous cluster.

Furthermore, in the case of discrete latent variable,
updating sufficient statics only requires increments to
the data structure T (r) allowing the use of approximate
counters [21, 5]. Approximate counters greatly reduce
memory costs for the counts: e.g., only 4 or 8 bits per
counter. Recent empirical evidence demonstrates that

Manuscript under review by AISTATS 2016

(a) Phase 1 (b) Phase 2
Figure 1: Efficient (re)use of buffers

approximate counters preserve statistical performance
without compromising runtime performance [32]. In
fact, speed often increases because not every increment
to the counter results in a write to memory. Note, due
to the compression, maintaining two buffers requires
less memory than one. Finally, if the latent variables
are discrete valued then we can leverage the fast Vose’
alias method [34] to sample. The O(|K|) construction
cost for the alias method can be easily amortized be-
cause the rule is homogeneous and thus alias tables
can be shared. Details about alias sampling method is
provided in Appendix E.

2.4 Wide applicability of ESCA

As stated previously, ESCA is technically applicable to
any model in which the complete data likelihood is in
the exponential family. Designing an ESCA algorithm
for a model of interest requires simply deriving the S-
step for the local update function in the automaton.
The S-step is the full conditional (Equation 6) which is
easy to derive for many models; for example, mixture
models in which (1) the data and parameter compo-
nents are conjugate and (2) the latent variables and
priors are conjugate. We list a few examples of such
models in Table 1 and provide additional details in Ap-
pendix F. Of course, the extent to which the models
enable exploitation of sparsity varies.

ESCA is also applicable to models such as restricted
Boltzmann machines (RBMs). For example, if the
data were a collection of images, each cell could inde-
pendently compute the S-step for its respective image.
For RBMs the cell would flip a biased coin for each
latent variable, and for deep Boltzmann machines, the
cells could perform Gibbs sampling. We save a precise
derivation and empirical evaluation for future work.

2.5 Understanding the limitations of ESCA

While ESCA has tremendous potential as a computa-
tional model for machine learning, in some cases, using
it to obtain MAP estimates is not clear.

Consider an Ising model on an d-dimensional torus H
p(x) ∝

∏
〈i,j〉∈H

exp(wijxixj) (9)

in which xi takes on values in {−1, 1}. The equilibrium
distribution of SCA with a Gibbs update is then [24]

q(x) ∝
∏
〈i,j〉∈H

cosh(wijxixj). (10)

Note that the hyperbolic cosine function (cosh) is sym-
metric in the sense that cosh(r) = cosh(−r). For val-
ues r ≥ 0 cosh is a good approximation and has a
maximum that corresponds to the exponential func-
tion; however, for values r < 0, the cosh is a poor
approximation for the exponential function.

Let x1, x2 be two random variables taking on values in
{−1, 1}. We define a simple two-variable Ising model
on a trivial one-dimensional torus:

p(x1, x2) ∝ exp(x1x2) (11)

We can enumerate and quantify the state space under
both SCA q(x1, x2) and the true distribution p(x1, x2):

state x1 x2 x1 ∗ x2 q(x1, x2) ∝ p(x1, x2) ∝
0 -1 -1 1 cosh(1) exp(1)
1 -1 1 -1 cosh(-1) exp(-1)
2 1 -1 -1 cosh(-1) exp(-1)
3 1 1 1 cosh(1) exp(1)

Since cosh is symmetric, all states are equally probable
for SCA and states 1 and 2 are MAP states. Yet, un-
der the true distribution, they are not. Consequently,
SCA with a Gibbs rule for the local evolution function
can yield incorrect MAP estimates.

Fortunately, in most cases we are interested in a model
over a dataset in which the data is i.i.d. That is, we
can fix our example as follows. Rather than paralleliz-
ing a single Ising model at the granularity of pixels
(over a single torus or grid), we instead parallelize the
Ising model at the granularity of the data (over multi-
ple tori, one for each image). Then, we could employ
Gibbs sampling on each image for the S-step.

2.6 Convergence

We now address the critical question of how the in-
variant measure of ESCA for the model presented in

Manuscript under review by AISTATS 2016

Section 2.1 is related to the true MAP estimates. First,
note that SCA is ergodic [18], a result that immedi-
ately applies if we ignore the deterministic components
of our automata (corresponding to the observations).
Now that we have established ergodicity, we next study
the properties of the stationary distribution and find
that the modes correspond to MAP estimates.

We make a few mild assumptions about the model:

• The observed data Fisher information is non-
singular, i.e. I(η) � 0.

• For the Fisher information for z|x, we need it to be
non-singular and central limit theorem, law of large
number to hold, i.e. Eη0 [IZ(η0)] � 0 and

sup
η

∣∣∣∣∣ 1n
n∑
i=1

Izi(η)− Eη0 [IX(η)]

∣∣∣∣∣→ 0 as n→∞

• We assume that 1
n

∑n
i=1∇η log p(xi; η) = 0 has at

least one solution, let η̂ be a solution.

These assumptions are reasonable. For example in
case of mixture models (or topic models), it just means
all component must be exhibited at least once and all
components are unique. The details of this case are
worked out in Appendix D. Also when the number of
parameters grow with the data, e.g., for topic mod-
els, the second assumption still holds. In this case, we
resort to corresponding result from high dimensional
statistics by replacing the law of large numbers with
Donsker’s theorem and everything else falls into place.

Consequently, we show ESCA converges weakly to a
distribution with mean equal to some root of the score
function (∇η log p(xi; η)) and thus a MAP fixed point
by borrowing the results known for SEM [26]. In par-
ticular, we have:

Theorem 1 Let the assumptions stated above hold
and η̃, is the estimate from ESCA. Then as the num-
ber of i.i.d. data point goes to infinity, i.e. n → ∞,
we have
√
n(η̃ − η̂)

D→ N
(
0, I(η0)−1[I − F (η0)−1

)
(12)

where F (η0) = I + Eη0 [IX(η0)](I(η0) + Eη0 [IX(η0)]).

This result implies that SEM flocks around a sta-
tionary point under very reasonable assumptions and
tremendous computational benefits. Also, for such
complicated models, reaching a stationary point is the
best that most methods achieve anyway. Now we
switch gears to adopt ESCA for LDA and perform
some simple experimental evaluations.

3 ESCA for LDA

Topic modeling, and latent Dirichlet allocation (LDA)
[2] in particular, have become a must-have of analytics

platforms and consequently needs to scale to larger
and larger datasets. In LDA, we model each document
m of a corpus of M documents as a distribution θm
that represents a mixture of topics. There are K such
topics, and we model each topic k as a distribution
φk over the vocabulary of words that appear in our
corpus. Each document m contains Nm words wmn
from a vocabulary of size V , and we associate a latent
variable zmn to each of the words. The latent variables
can take one of K values that indicate which topic
the word belongs to. Both distributions θm and φk
have a Dirichlet prior, parameterized respectively with
a constant α and β. See Appendix B for more details.

3.1 Existing systems

Many of the scalable systems for topic modeling are
based on one of two core inference methods: the col-
lapsed Gibbs sampler (CGS) [12], and variational in-
ference (VI) [2] and approximations thereof [1]. To
scale LDA to large datasets, or for efficiency reasons,
we may need to distribute and parallelize them. Both
algorithms can be further approximated to meet such
implementation requirements.

Collapsed Gibbs Sampling In collapsed Gibbs
sampling the full conditional distribution of the latent
topic indicators given all the others is

p(zmn = k|z¬mn,w) ∝ (Dmk + α)
Wkwmn

+ β

Tk + βV
(13)

where Dmk is the number of latent variables in doc-
ument m that equal k, Wkv is the number of latent
variables equal to k and whose corresponding word
equals v, and Tk is the number of latent variables that
equal k, all excluding current zmn.

CGS is a sequential algorithm in which we draw la-
tent variables in turn, and repeat the process for sev-
eral iterations. The algorithm performs well statisti-
cally, and has further benefited from breakthroughs
that lead to a reduction of the sampling complexity
[38, 17]. This algorithm can be approximated to
enable distribution and parallelism, primarily in two
ways. One is to partition the data, perform one sam-
pling pass and then assimilate the sampler states, thus
yielding an approximate distributed version of CGS
(AD-LDA) [25]. Another way is to partition the data
and allow each sampler to communicate with a dis-
tributed central storage continuously. Here, each sam-
pler sends the differential to the global state-keeper
and receives from it the latest global value. A very
scalable system built on this principle and leveraging
inherent sparsity of LDA is YahooLDA [30]. Further
improvement and sampling using alias table was in-
corporated in lightLDA [40]. Contemporaneously, a

Manuscript under review by AISTATS 2016

nomadic distribution scheme and sampling using Fen-
wick tree was proposed in F+LDA [39].

Variational Inference In variational inference
(VI), we seek to optimize the parameters of an ap-
proximate distribution that assumes independence of
the latent variables to find a member of the family
that is close to the true posterior. Typically, for LDA,
document-topic proportions and topic indicators are
latent variables and topics are parameter. Then, coor-
dinate ascent alternates between them.

One way to scale VI is stochastic variational infer-
ence (SVI) which employs SGD by repeatedly updat-
ing the topics via randomly chosen document subsets
[14]. Adding a Gibbs step to SVI introduces sparsity
for additional efficiency [20]. In some ways this is anal-
ogous to our S-step, but in the context of variational
inference, the conditional is much more expensive to
compute, requiring several rounds of sampling.

Another approach, CVB0, achieves scalability by ap-
proximating the collapsed posterior [31]. Here, they
minimize the free energy of the approximate distri-
bution for a given parameter γmnk and then use the
zero-order Taylor expansion [1].

γmnk ∝ (Dmk + α)× Wkwmn
+ β

Tk + β V
(14)

where Dmk is the fractional contribution of latent vari-
ables in document m for topic k, Wkv is the contri-
bution of latent variables for topic k and whose corre-
sponding word equals v, and Tk is the the contribution
of latent variables for topic k. Inference updates the
variational parameters until convergence. It is possible
to distribute and parallelize CVB0 over tokens [1]. VI
and CVB0 are the core algorithms behind several scal-
able topic modeling systems including Mr.LDA [41]
and the Apache Spark machine-learning suite.

Remark It is worth noticing that Gibbs sampling
and variational inference, despite being justified very
differently, have at their core the very same formu-
las (shown in a box in formula (13) and (14)). Each
of which are literally deciding how important is some
topic k to the word v appearing in document m by ask-
ing the questions: “How many times does topic k occur
in document m?”, “How many times is word v asso-
ciated with topic k?”, and “How prominent is topic k
overall?”. It is reassuring that behind all the beau-
tiful mathematics, something simple and intuitive is
happening. As we see next, ESCA addresses the same
questions via analogous formulas.

3.2 An ESCA Algorithm for LDA

To re-iterate, the point of using such a method for LDA
is that the parallel update dynamics of the ESCA gives
us an algorithm that is simple to parallelize, distribute
and scale. In the next section, we will evaluate how
it works in practice. For now, let us explain how we
design our SCA to analyze data.

We begin by writing the stochastic EM steps for LDA
(derivation is in Appendix B):

E-step: independently in parallel compute the condi-
tional distribution locally:

qmnk =
θmkφkwmn∑K

k′=1 θmk′φk′wmn

(15)

S-step: independently in parallel draw zij from the
categorical distribution:

zmn ∼ Categorical(qmn1, ..., qmnK) (16)

M-step: independently in parallel compute the new
parameter estimates:

θmk =
Dmk + α− 1

Nm +Kα−K

φkv =
Wkv + β − 1

Tk + V β − V

(17)

We simulate these inference steps in ESCA, which is a
dynamical system with evolution function Φ : S −→ S
over the state space S. For LDA, the state space S is

S = Z −→ K×M×V (18)

where Z is the set of cell identifiers (one per token in
our corpus), K is a set of K topics, M is a set of M
document identifiers, and V is a set of V identifiers for
the vocabulary words.

The initial state s0 is the map defined as follows: for
every occurrence of the word v in document m, we
associate a cell z to the triple (kz,m, v) where kz is
chosen uniformly at random from K and independently
from kz′ for all z′ 6= z. This gives us

s0 = z 7→ (kz,m, v) (19)

We now need to describe the evolution function Φ.
First, assuming that we have a state s and a cell z, we
define the following distribution:

pz(k|s) ∝ (Dmk + α)× Wkv + β

Tk + β V
(20)

where Dmk =
∣∣∣{ z | ∃v. s(z) = (k,m, v)

}∣∣∣,
Wkv =

∣∣∣{ z | ∃m. s(z) = (k,m, v)
}∣∣∣, and

Tk =
∣∣∣{ z | ∃m. ∃v. s(z) = (k,m, v)

}∣∣∣. Note that

we have chosen our local update rule slightly different
without an offset of −1 for the counts corresponding to

Manuscript under review by AISTATS 2016

the mode of the Dirichlet distributions and requiring
α, β > 1. Instead, our local update rule allows us to
have the relaxed requirement α, β > 0 which is more
common for LDA inference algorithms.

Assuming that s(z) = (k,m, v) and that k′ is a sample
from pz (hence the name “stochastic” cellular automa-
ton) we define the local update function as:

φ(s, z) = (k′,m, v)

where s(z) = (k,m,v) and k′ ∼ pz(· |s)
(21)

That is, the document and word of the cell remain
unchanged, but we choose a new topic according to
the distribution pz induced by the state. We obtain the
evolution function of the stochastic cellular automaton
by applying the function φ uniformly on every cell.

Φ(s) = z 7→ φ(s, z) (22)

Finally, the SCA algorithm simulates the evolution
function Φ starting with s0. Of course, since LDA’s
complete data likelihood is in the exponential family,
we never have to represent the states explicitly, and
instead employ the sufficient statistics.

Our implementation has two copies of the count ma-
trices Di, W i, and T i for i = 0 or 1 (as in CGS or
CVB0, we do not compute the values Dik, Wkv, and
Tk but keep track of the counts as we assign topics to
the cells/latent variables). During iteration i of the
evolution function, we apply Φ by reading Di mod 2,
W i mod 2, and T i mod 2 and incrementing Di+1 mod 2,
W i+1 mod 2, and T i+1 mod 2) as we assign topics.

3.3 Advantages of ESCA for LDA

The positive consequences of ESCA as a choice for
inference on LDA are many:

• Our memory footprint is minimal since we only store
the data and sufficient statistics. In contrast to
MCMC methods, we do not store the assignments to
latent variables z. In contrast to variational meth-
ods, we do not store the variational parameters γ.
Further, variational methods require K memory ac-
cesses (one for each topic) per word. In contrast,
the S-step ensures we only have a single access (for
the sampled topic) per word. Such reduced pressure
on the memory bandwidth can improve performance
significantly for highly parallel applications.

• We can further reduce the memory footprint by com-
pressing the sufficient statistics with approximate
counters [21, 5]. This is possible because updating
the sufficient statistics only requires increments as in
Mean-for-Mode [32]. In contrast, CGS decrements
counts, preventing the use of approximate counters.

• Our implementation is lock-free (in that it does not
use locks, but assumes atomic increments) because
the double buffering ensures we never read or write

to the same data structures. There is less synchro-
nization, which at scale is significant.

• Finally, our algorithm is able to fully benefit from
Vose’s alias method [35] because homogeneous up-
date rule for SCA ensures that the cost for con-
structing the alias table is amortized across the cells.
To elaborate, the SCA update Equation (20) decom-
poses as

pz(k|s) ∝
[
Dmk

Wkv + β

Tk + β V

]
+

[
α
Wkv + β

Tk + β V

]
(23)

allowing us to treat it as a discrete mixture and di-
vide the sampling procedure into a two steps. First,
we toss a biased coin to decide which term of the
equation to sample, and second, we employ a spe-
cialized sampler depending on the chosen term. The
first term is extremely sparse (documents comprise
only a small handful of topics) and a basic sampling
procedure suffices. The second term is not sparse,
but is independent of the current document m and
depends only on the W and T matrices. Moreover,
as mentioned earlier, during iteration i, we will be
only reading values from non-changing W i mod 2,
and T i mod 2 matrices. As a result, at the start of
each iteration we can precompute, from the W and
T matrices, tables for use with Vose’s alias method,
which enables sampling from the second term in a
mere 3 CPU operations. Thus, the evolution for
ESCA is extremely efficient.

3.3.1 Connection to SGD

We can view ESCA as implicit SGD on MAP for LDA.
This connection alludes to the convergence rate of
ESCA. To illustrate, we consider θ only. As pointed
out in [37, 29], one EM step is:

θ+m = θm +M
∂ log p

∂θmk
which is gradient descent with Frank-Wolfe type up-
date and line search. Similarly, for ESCA using
stochastic EM, one step is

θ+mk =
Dnmk
Nm

=
1

Nm

Nm∑
n=1

δ(zmn = k)

Again vectorizing and re-writing as earlier:

θ+m = θm +Mg

where M = 1
Nm

[
diag(θm)− θmθTm

]
and g =

1
θmk

∑Nm

n=1 δ(zmn = k). The vector g can be shown
to be an unbiased noisy estimate of the gradient, i.e.

E[g] =
1

θmk

Ni∑
n=1

E[δ(zij = k)] =
∂ log p

∂θmk

Thus, a single step of SEM on our SCA is equivalent to
a single step of SGD. Consequently, we could further
embrace the connection to SGD and use a subset of the

Manuscript under review by AISTATS 2016

Iteration
0 20 40 60 80 100

pe
r

w
or

d
lo

g-
lik

el
ih

oo
d

-9.5

-9

-8.5

-8

-7.5

-7

-6.5
pubmed 1000

SCA
CGS
CVB0

(a) PubMed, K = 1000,
α = 0.05, β = 0.1

Iteration
0 20 40 60 80 100

pe
r

w
or

d
lo

g-
lik

el
ih

oo
d

-9.5

-9

-8.5

-8
wiki 1000

SCA
CGS
CVB0

(b) Wikipedia, K = 1000,
α = 0.05, β = 0.1

Time [min]
0 50 100 150 200 250

pe
r

w
or

d
lo

g-
lik

el
ih

oo
d

-9.5

-9

-8.5

-8

-7.5

-7

-6.5
pubmed 1000

SCA
CGS
CVB0

(c) Pubmed, K = 1000, α =
0.05, β = 0.1

Time [min]
0 50 100 150 200 250

pe
r

w
or

d
lo

g-
lik

el
ih

oo
d

-9.5

-9

-8.5

-8
wiki 1000

SCA
CGS
CVB0

(d) Wikipedia, K = 1000,
α = 0.05, β = 0.1

Figure 2: Evolution of log likelihood on Wikipedia and Pubmed over number of iterations and time.

data for the S and M steps, similar to incremental EM
[23]. Note that in the limit in which batches comprise
just a single token, the algorithm emulates a collapsed
Gibbs sampler. This interpretation strengthens the
theoretical justification for many existing approximate
Gibbs sampling approaches.

4 Experiments

To evaluate the strength and weaknesses of our al-
gorithm, we compare against parallel and distributed
implementations of CGS and CVB0. We also compare
our results to performance numbers reported in the
literature including those of F+LDA and lightLDA.

Software & hardware All three algorithms are im-
plemented in simple C++11. We implement multi-
threaded parallelization within a node using the work-
stealing Fork/Join framework, and the distribution
across multiple nodes using the process binding to a
socket over MPI. We also implemented a version of
ESCA with a sparse representation for the array D
of counts of topics per documents and Vose’s alias
method to draw from discrete distributions. We run
our experiments on a small cluster of 4 nodes con-
nected through 10Gb/s Ethernet. Each node has two
9-core Intel Xeon E5 processors for a total of 36 hard-
ware threads per node. For random number genera-
tion we employ Intel c©Digital Random Number Gener-
ators through instruction RDRAND, which uses ther-
mal noise within the silicon to output a random stream
of bits at 3 Gbit/s, producing true random numbers.

Datasets We experiment on two public datasets,
both of which are cleaned by removing stop words and
rare words: PubMed abstracts and English Wikipedia.
We also run on a third proprietary dataset.

Dataset V M Tokens

PubMed 141,043 8,200,000 737,869,085
Wikipedia 210,233 6,631,176 1,133,050,514
Large ∼140,000 ∼3 billion ∼171 billion

Evaluation To evaluate the proposed method we use
predicting power as a metric by calculating the per-
word log-likelihood (equivalent to negative log of per-
plexity) on 10,000 held-out documents conditioned on
the trained model. We set K = 1000 to demonstrate
performance for a large number of topics. The hyper
parameters are set as α = 50/K and β = 0.1 as sug-
gested in [13]; other systems such as YahooLDA and
Mallet also use this as the default parameter setting.
The results are presented in Figure 2. and some more
experiments in Appendix G.

Finally, for the large dataset, our implementation of
ESCA (only 300 lines of C++) processes 570 million
tokens per second (tps) on our modest 4-node clus-
ter. In comparison, some of the best existing systems
achieve 112 million tps (F+LDA, personal communi-
cation) and 60 million tps (lightLDA) [40].

5 Discussion

We have described a novel inference method for la-
tent variable models that simulates a stochastic cellu-
lar automaton. The equilibrium of the dynamics are
MAP fixed points and the algorithm has many de-
sirable computational properties: it is embarrassingly
parallel, memory efficient, and like HOGWILD!, is
virtually lock-free. Further, for many models, it en-
ables the use of approximate counters and the alias
method. Thus, we were able to achieve an order of
magnitude speed-up over the current state-of-the-art
inference algorithms for LDA with accuracy compara-
ble to collapsed Gibbs sampling.

In general, we cannot always guarantee the correct in-
variant measure [7], and found that parallelizing im-
properly causes convergence to incorrect MAP fixed
points. Even so, SCA is used for simulating Ising mod-
els in statistical physics [33]. Interestingly, in previous
work [16], it has been shown that stochastic cellular
automata are closely related to equilibrium statistical
models and the stationary distribution is known for a
large class of finite stochastic cellular automata.

Manuscript under review by AISTATS 2016

References

[1] Arthur Asuncion, Max Welling, Padhraic Smyth,
and Yee Whye Teh. On smoothing and inference
for topic models. In Proc. Twenty-Fifth Con-
ference on Uncertainty in Artificial Intelligence,
UAI ’09, pages 27–34, Arlington, Virginia, USA,
2009. AUAI Press.

[2] David M. Blei, Andrew Y. Ng, and Michael I.
Jordan. Latent Dirichlet allocation. Journal of
Machine Learning Research, 3:993–1022, March
2003.

[3] J. Canny. Gap: a factor model for discrete data.
In Proceedings of the 27th annual international
ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 122–129.
ACM, 2004.

[4] Gilles Celeux and Jean Diebolt. The sem al-
gorithm: a probabilistic teacher algorithm de-
rived from the em algorithm for the mixture prob-
lem. Computational statistics quarterly, 2(1):73–
82, 1985.

[5] Miklós Csűrös. Approximate counting with a
floating-point counter. In M. T. Thai and Sar-
taj Sahni, editors, Computing and Combina-
torics (COCOON 2010), number 6196 in Lec-
ture Notes in Computer Science, pages 358–
367. Springer Berlin Heidelberg, 2010. See also
http://arxiv.org/pdf/0904.3062.pdf.

[6] Rajarshi Das, Manzil Zaheer, and Chris Dyer.
Gaussian lda for topic models with word embed-
dings. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Lin-
guistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume
1: Long Papers), pages 795–804, Beijing, China,
July 2015. Association for Computational Lin-
guistics.

[7] Donald A. Dawson. Synchronous and asyn-
chronous reversible Markov systems. Canadian
mathematical bulletin, 17:633–649, 1974.

[8] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
Simplified data processing on large clusters. Com-
mun. ACM, 51(1):107–113, January 2008.

[9] Anton K Formann and Thomas Kohlmann. La-
tent class analysis in medical research. Statistical
methods in medical research, 5(2):179–211, 1996.

[10] W. R. Gilks, S. Richardson, and D. J. Spiegel-
halter. Markov Chain Monte Carlo in Practice.
Chapman & Hall, 1995.

[11] Joseph Gonzalez, Yucheng Low, Arthur Gretton,
and Carlos Guestrin. Parallel gibbs sampling:
from colored fields to thin junction trees. In Inter-
national Conference on Artificial Intelligence and
Statistics, pages 324–332, 2011.

[12] Thomas L. Griffiths and Mark Steyvers. Finding
scientific topics. Proc. National Academy of Sci-
ences of the United States of America, 101(suppl
1):5228–5235, 2004.

[13] T.L. Griffiths and M. Steyvers. Finding scientific
topics. Proceedings of the National Academy of
Sciences, 101:5228–5235, 2004.

[14] Matthew D. Hoffman, David M. Blei, Chong
Wang, and John Paisley. Stochastic variational
inference. Journal of Machine Learning Research,
14:1303–1347, May 2013.

[15] Michael I. Jordan, Zoubin Ghahramani, Tommi S.
Jaakkola, and Lawrence K. Saul. An introduc-
tion to variational methods for graphical models.
Mach. Learn., 37(2):183–233, November 1999.

[16] Joel L. Lebowitz, Christian Maes, and Eugene R.
Speer. Statistical mechanics of probabilistic cel-
lular automata. Journal of statistical physics,
59:117–170, April 1990.

[17] Aaron Q. Li, Amr Ahmed, Sujith Ravi, and
Alexander J. Smola. Reducing the sampling com-
plexity of topic models. In 20th ACM SIGKDD
Intl. Conf. Knowledge Discovery and Data Min-
ing, 2014.

[18] Pierre-Yves Louis. Automates Cellulaires Proba-
bilistes : mesures stationnaires, mesures de Gibbs
associées et ergodicité. PhD thesis, Université des
Sciences et Technologies de Lille and il Politecnico
di Milano, September 2002.

[19] Jean Mairesse and Irène Marcovici. Around prob-
abilistic cellular automata. Theoretical Computer
Science, 559:42–72, November 2014.

[20] David Mimno, Matt Hoffman, and David Blei.
Sparse stochastic inference for latent dirichlet al-
location. In John Langford and Joelle Pineau, ed-
itors, Proceedings of the 29th International Con-
ference on Machine Learning (ICML-12), ICML
’12, pages 1599–1606, New York, NY, USA, July
2012. Omnipress.

[21] Robert Morris. Counting large numbers of events
in small registers. Commun. ACM, 21(10):840–
842, October 1978.

Manuscript under review by AISTATS 2016

[22] R. Neal. Markov chain sampling methods for
dirichlet process mixture models. Technical Re-
port 9815, University of Toronto, 1998.

[23] Radford M Neal and Geoffrey E Hinton. A view
of the em algorithm that justifies incremental,
sparse, and other variants. In Learning in graph-
ical models, pages 355–368. Springer, 1998.

[24] A. U. Neumann and B. Derrida. Finite size scaling
study of dynamical phase transitions in two di-
mensional models: Ferromagnet, symmetric and
non symmetric spin glasses. J. Phys. France,
49:1647–1656, 08 1988.

[25] David Newman, Arthur Asuncion, Padhraic
Smyth, and Max Welling. Distributed algo-
rithms for topic models. J. Machine Learn-
ing Research, 10:1801–1828, December 2009.
http://dl.acm.org/citation.cfm?id=1577069.1755845.

[26] Søren Feodor Nielsen. The stochastic em al-
gorithm: estimation and asymptotic results.
Bernoulli, pages 457–489, 2000.

[27] Sam Patterson and Yee Whye Teh. Stochastic
gradient riemannian langevin dynamics on the
probability simplex. In Advances in Neural In-
formation Processing Systems, pages 3102–3110,
2013.

[28] Herbert Robbins and Sutton Monro. A stochas-
tic approximation method. Ann. Math. Statist.,
22(3):400–407, 09 1951.

[29] Ruslan Salakhutdinov, Sam Roweis, and Zoubin
Ghahramani. Relationship between gradient and
em steps in latent variable models.

[30] Alexander Smola and Shravan Narayanamurthy.
An architecture for parallel topic models. Proc.
VLDB Endowment, 3(1-2):703–710, September
2010.

[31] Whye Yee Teh, David Newman, and Max Welling.
A collapsed variational Bayesian inference algo-
rithm for latent Dirichlet allocation. In Advances
in Neural Information Processing Systems 19,
NIPS 2006, pages 1353–1360. MIT Press, 2007.

[32] Jean-Baptiste Tristan, Joseph Tassarotti, and
Guy L. Steele Jr. Efficient training of LDA on a
GPU by Mean-For-Mode Gibbs sampling. In 32nd
International Conference on Machine Learning,
volume 37 of ICML 2015, 2015. Volume 37 of
the Journal in Machine Learning Research: Work-
shop and Conference Proceedings.

[33] Gérard Y. Vichniac. Simulating physics with cel-
lular automata. Physica D: Nonlinear Phenom-
ena, 10(1-2):96–116, January 1984.

[34] Michael D. Vose. A linear algorithm for gen-
erating random numbers with a given distribu-
tion. Software Engineering, IEEE Transactions
on, 1991.

[35] Michael D Vose. A linear algorithm for gen-
erating random numbers with a given distribu-
tion. Software Engineering, IEEE Transactions
on, 17(9):972–975, 1991.

[36] Max A Woodbury, Jonathan Clive, and Arthur
Garson. Mathematical typology: a grade of mem-
bership technique for obtaining disease definition.
Computers and biomedical research, 11(3):277–
298, 1978.

[37] Lei Xu and Michael I Jordan. On convergence
properties of the em algorithm for gaussian mix-
tures. Neural computation, 8(1):129–151, 1996.

[38] Limin Yao, David Mimno, and Andrew McCal-
lum. Efficient methods for topic model inference
on streaming document collections. In Proc. 15th
ACM SIGKDD Intl. Conf. Knowledge Discovery
and Data Mining, KDD ’09, pages 937–946, New
York, 2009. ACM.

[39] Hsiang-Fu Yu, Cho-Jui Hsieh, Hyokun Yun, SVN
Vishwanathan, and Inderjit S Dhillon. A scal-
able asynchronous distributed algorithm for topic
modeling. In Proceedings of the 24th International
Conference on World Wide Web, pages 1340–
1350. International World Wide Web Conferences
Steering Committee, 2015.

[40] Jinhui Yuan, Fei Gao, Qirong Ho, Wei Dai, Jin-
liang Wei, Xun Zheng, Eric Po Xing, Tie-Yan Liu,
and Wei-Ying Ma. Lightlda: Big topic models
on modest computer clusters. In Proceedings of
the 24th International Conference on World Wide
Web, pages 1351–1361. International World Wide
Web Conferences Steering Committee, 2015.

[41] Ke Zhai, Jordan Boyd-Graber, Nima Asadi, and
Mohamad L Alkhouja. Mr. lda: A flexible large
scale topic modeling package using variational in-
ference in mapreduce. In Proceedings of the 21st
international conference on World Wide Web,
pages 879–888. ACM, 2012.

Manuscript under review by AISTATS 2016

A (Stochastic) EM in General

Expectation-Maximization (EM) is an iterative method for finding the maximum likelihood or maxi-
mum a posteriori (MAP) estimates of the parameters in statistical models when data is only par-
tially, or when model depends on unobserved latent variables. This section is inspired from
http://www.ece.iastate.edu/∼namrata/EE527 Spring08/emlecture.pdf

We derive EM algorithm for a very general class of model. Let us define all the quantities of interest.

Table 2: Notation
Symbol Meaning

x Observed data
z Unobserved data

(x, z) Complete data
fX;η(x; η) marginal observed data density
fZ;η(z; η) marginal unobserved data density

fX,Z;η(x, z; η) complete data density/likelihood
fZ|X;η(z|x; η) conditional unobserved-data (missing-data) density.

Objective: To maximize the marginal log-likelihood or posterior, i.e.

L(η) = log fX;η(x; η). (24)

Assumptions:

1. zi are independent given η. So

fZ;η(z; η) =

N∏
i=1

fZi;η(zi; η), (25)

2. xi are independent given missing data zi and η. So

fX,Z;η(x, z; η) =

N∏
i=1

fXi,Zi;η(xi, zi; η). (26)

As a consequence we obtain:

fZ|X;η(z|x; η) =

N∏
i=1

fZi|Xi;η(zi|xi; η), (27)

Now,

L(η) = log fX;η(x; η) = log fX,Z;η(x, z; η)− log fZ|X;η(z|x; η) (28)

or, summing across observations,

L(η) =

N∑
i=1

log fXi;η(xi; η) =

N∑
i=1

log fXi,Zi;η(xi, zi; η)−
N∑
i=1

log fZi|Xi;η(zi|xi; η). (29)

Let us take the expectation of the above expression with respect to fZi|Xi;η(zi|xi; ηp), where we choose η = ηp:

N∑
i=1

EZi|Xi;η [log fXi;η(xi; η)|xi; ηp]

=

N∑
i=1

EZi|Xi;η [log fXi,Zi;η(xi, zi; η)|xi; ηp]−
N∑
i=1

EZi|Xi;η

[
log fZi|Xi;η(zi|xi; η)|xi; ηp

] (30)

Manuscript under review by AISTATS 2016

Since L(η) = log fX;η(x; η) does not depend on z, it is invariant for this expectation. So we recover:

L(η) =

N∑
i=1

EZi|Xi;η [log fXi,Zi;η(xi, zi; η)|xi; ηp]−
N∑
i=1

EZi|Xi;η

[
log fZi|Xi;η(zi|xi; η)|xi; ηp

]
= Q(η|ηp)−H(η|ηp).

(31)

Now, (31) may be written as
Q(η|ηp) = L(η) + H(η|ηp)︸ ︷︷ ︸

≤H(ηp|ηp)

(32)

Here, observe that H(η|ηp) is maximized (with respect to η) by η = ηp, i.e.

H(η|ηp) ≤ H(ηp|ηp) (33)

Simple proof using Jensen’s inequality.

As our objective is to maximize L(η) with respect to η, if we maximize Q(η|ηp) with respect to η, it will force
L(η) to increase. This is what is done repetitively in EM. To summarize, we have:

E-step : Compute fZi|Xi;η(zi|xi; ηp) using current estimate of η = ηp.

M-step : Maximize Q(η|ηp) to obtain next estimate ηp+1.

Now assume that the complete data likelihood belongs to the exponential family, i.e.

fXi,Zi;η(xi, zi; η) = exp (〈T (zi, xi) , η〉 − g(η)) (34)

then

Q(η|ηp) =

N∑
i=1

EZi|Xi;η [log fXi,Zi;η(xi, zi; η)|xi; ηp]

=

N∑
i=1

EZi|Xi;η [〈T (zi, xi) , η〉 − g(η)|xi; ηp]

(35)

To find the maximizer, differentiate and set it to zero:

1

N

∑
i

EZi|Xi;η [〈T (zi, xi) , η〉 |xi; ηp] =
dg(η)

dη
(36)

and one can obtain the maximizer by solving this equation.

Stochastic EM (SEM) introduces an additional simulation after the E-step that replaces the full distribution
with a single sample:

S-step Sample zi ∼ fZi|Xi;η(zi|xi; ηp)

(a) Same initialization (b) Bad initialization for SEM

Figure 3: Performance of SEM

Manuscript under review by AISTATS 2016

This essentially means we replace E[·] with an empirical estimate. Thus, instead of solving (36), we simply have:

1

N

∑
i

T (zi, xi) =
dg(η)

dη
. (37)

Computing and solving this system of equations is considerably easier than (36).

Now to demonstrate that SEM is well behaved and works in practice, we run a small experiment. Consider the
problem of estimating the parameters of a Gaussian mixture. We choose a 2-dimensional Gaussian with K = 30
clusters and 100,000 training points and 1,000 test points. We run EM and SEM with the following initialization:

• Both SEM and EM are provided the same initialization.
• SEM is deliberately provided a bad initialization, while EM is not.

The log-likelihood on the heldout test set is shown in Figure 3.

Manuscript under review by AISTATS 2016

B (S)EM Derivation for LDA

We derive an EM procedure for LDA.

B.1 LDA Model

In LDA, we model each document m of a corpus of M documents as a distribution θm that represents a mixture
of topics. There are K such topics, and we model each topic k as a distribution φk over the vocabulary of words
that appear in our corpus. Each document m contains Nm words wmn from a vocabulary of size V , and we
associate a latent variable zmn to each of the words. The latent variables can take one of K values that indicate
which topic the word belongs to. We give each of the distributions θm and φk a Dirichlet prior, parameterized
respectively with a constant α and β. More concisely, LDA has the following mixed density.

p(w, z,θ,φ) =

[
M∏
m=1

Nm∏
n=1

Cat(wmn | φzmn
) Cat(zmn | θm)

][
M∏
m=1

Dir(θm | α)

][
K∏
k=1

Dir(φk | β)

]
(38)

The choice of a Dirichlet prior is not a coincidence: we can integrate all of the variables θm and φk and obtain
the following closed form solution.

p(w, z) =

[
M∏
m=1

Pol
(
{zm′n | m′ = m},K, α

)][K∏
k=1

Pol
(
{wmn | zmn = k}, V, β

)]
(39)

where Pol is the Polya distribution

Pol(S,X, η) =
Γ(η K)

Γ(|S|+ η X)

X∏
x=1

Γ
(∣∣{z | z ∈ S, z = x}

∣∣+ η
)

Γ(η)
(40)

for all j

for all i for all k

α θm zmn wmn φk β

Figure 4: LDA Graphical Model

Algorithm 2 LDA Generative Model

input: α,β

1: for k = 1→ K do
2: Choose topic φk ∼ Dir(β)
3: end for
4: for all document m in corpus D do
5: Choose a topic distribution θm ∼ Dir(α)
6: for all word index n from 1 to Nm do
7: Choose a topic zmn ∼ Categorical(θm)
8: Choose word wmn ∼ Categorical(φzmn

)
9: end for

10: end for

The joint probability density can be expressed as:

p(W,Z, θ, φ|α, β) =

[
K∏
k=1

p(φk|β)

][
M∏
m=1

p(θm|α)

Nm∏
n=1

p(zmn|θm)p(wmn|φzmn)

]

∝

[
K∏
k=1

V∏
v=1

φβ−1kv

][
M∏
m=1

(
K∏
k=1

θα−1mk

)
Nm∏
n=1

θmzmnφzmnwmn

] (41)

Manuscript under review by AISTATS 2016

B.2 Expectation Maximization

We begin by marginalizing the latent variable Z and finding the lower bound for the likelihood/posterior:

log p(W, θ, φ|α, β) = log
∑
Z

p(W,Z, θ, φ|α, β)

=

M∑
m=1

Nm∑
n=1

log

K∑
k=1

p(zmn = k|θm)p(wmn|φk)

+

K∑
k=1

log p(φk|β) +

M∑
m=1

log p(θm|α)

=

M∑
m=1

Nm∑
n=1

log

K∑
k=1

q(zmn = k|wmn)
p(zmn = k|θm)p(wmn|φk)

q(zmn = k|wmn)

+

K∑
k=1

log p(φk|β) +

M∑
m=1

log p(θm|α)

(Jensen Inequality) ≥
M∑
m=1

Nm∑
n=1

K∑
k=1

q(zmn = k|wmn) log
p(zmn = k|θm)p(wmn|φk)

q(zmn = k|wmn)

+

K∑
k=1

log p(φk|β) +

M∑
m=1

log p(θm|α)

(42)

Let us define the following functional:

F (q, θ, φ) := −
M∑
m=1

Nm∑
n=1

DKL(q(zmn|wmn)||p(zmn|wmn, θm, φ))

+

M∑
m=1

Nm∑
n=1

p(wmn|θm, φ) +

K∑
k=1

log p(φk|β) +

M∑
m=1

log p(θm|α)

(43)

B.2.1 E-Step

In the E-step, we fix θ, φ and maximize F for q. As q appears only in the KL-divergence term, it is equivalent to
minimizing the KL-divergence between q(zmn|wmn) and p(zmn|wmn, θm, φ). We know that for any distributions
f and g the KL-divergence is minimized when f = g and is equal to 0. Thus, we have

q(zmn = k|wmn) = p(zmn = k|wmn, θm, φ)

=
θmkφkwmn∑K

k′=1 θmk′φk′wmn

(44)

For simplicity of notation, let us define

qmnk =
θmkφkwmn∑K

k′=1 θmk′φk′wmn

(45)

B.2.2 M-Step

In the E-step, we fix q and maximize F for θ, φ. As this will be a constrained optimization (θ and φ must lie on
simplex), we use standard constrained optimization procedure of Lagrange multipliers. The Lagrangian can be

Manuscript under review by AISTATS 2016

expressed as:

L(θ, φ, λ, µ) =

M∑
m=1

Nm∑
m=1

K∑
k=1

q(zmn = k|wmn) log
p(zmn = k|θm)p(wmn|φk)

q(zmn = k|wmn)
+

K∑
k=1

log p(φk|β)

+

M∑
m=1

log p(θm|α) +

K∑
k=1

λk

(
1−

V∑
v=1

φkv

)
+

M∑
m=1

µi

(
1−

K∑
k=1

θmk

)

=

M∑
m=1

Nm∑
n=1

K∑
k=1

qmnk log θmkφkwmn +

K∑
k=1

V∑
v=1

(βv − 1) log φkv +

M∑
m=1

K∑
k=1

(αk − 1) log θmk

+

K∑
k=1

λk

(
1−

V∑
v=1

φkv

)
+

M∑
m=1

µm

(
1−

K∑
k=1

θmk

)
+ const.

(46)

Maximising θ Taking derivative with respect to θmk and setting it to 0, we obtain

∂L
∂θmk

= 0 =

Nm∑
j=1

qmnk + αk − 1

θmk
− µm

µmθmk =

Ni∑
j=1

qmnk + αk − 1

(47)

After solving for µm, we finally obtain

θmk =

∑Nm

n=1 qmnk + αk − 1∑K
k′=1

∑Nm

j=1 qmnk′ + αk′ − 1
(48)

Note that
∑K
k′=1 qmnk′ = 1, we reach at the optimizer:

θmk =
1

Nm +
∑

(αk′ − 1)

(
Nm∑
n=1

qmnk + αk − 1

)
(49)

Maximising φ Taking derivative with respect to φkv and setting it to 0, we obtain

∂L
∂φkv

= 0 =

M∑
m=1

Nm∑
n=1

qmnkδ(v − wmn) + βv − 1

φkv
− λk

λkφkv =

M∑
m=1

Nm∑
n=1

qmnkδ(v − wmn) + βv − 1

(50)

After solving for λk, we finally obtain

φkv =

∑M
m=1

∑Nm

n=1 qmnkδ(v − wmn) + βv − 1∑V
v′=1

∑M
m=1

∑Nm

n=1 δ(v
′ − wmn) + βv′ − 1

(51)

Note that
∑V
v′=1 δ(v

′ − wmn) = 1, we reach at the optimizer:

φkv =

∑M
m=1

∑Nm

n=1 qmnkδ(v − wmn) + βv − 1∑M
m=1

∑Nm

n=1 qmnk +
∑

(βv′ − 1)
(52)

B.3 Introducing Stochasticity

After performing the E-step, we add an extra simulation step, i.e. we draw and impute the values for the latent
variables from its distribution conditioned on data and current estimate of the parameters. This means basically
qmnk gets transformed into δ(zmn − k̃) where k̃ is value drawn from the conditional distribution. Then we
proceed to perform the M-step, which is even simpler now. To summarize SEM for LDA will have following
steps:

Manuscript under review by AISTATS 2016

E-step : in parallel compute the conditional distribution locally:

qmnk =
θmkφkwmn∑K
k′=1 θmk′φk′wij

(53)

S-step : in parallel draw zmn from the categorical distribution:

zmn ∼ Categorical(qmn1, ..., qmnK) (54)

M-step : in parallel compute the new parameter estimates:

θmk =
Dmk + αk − 1

Nm +
∑

(αk′ − 1)

φkv =
Wkv + βv − 1

Tk +
∑

(βv′ − 1)

(55)

where Dmk =
∣∣∣{ zmn | zmn = k

}∣∣∣,
Wkv =

∣∣∣{ zmn | wmn = v, zmn = k
}∣∣∣, and

Tk =
∣∣∣{ zmn | zmn = k

}∣∣∣ =
V∑
v=1

Wkv.

Manuscript under review by AISTATS 2016

C Equivalency between (S)EM and (S)GD for LDA

We study the equivalency between (S)EM and (S)GD for LDA.

C.1 EM for LDA

EM for LDA can be summarized by follows:

E-Step

qmnk =
θmkφkwmn∑K

k′=1 θmk′φk′wmn

(56)

M-Step

θmk =
1

Nm +
∑

(αk′ − 1)

(
Nm∑
n=1

qmnk + αk − 1

)

φkv =

∑M
m=1

∑Nm

n=1 qmnkδ(v − wmn) + βv − 1∑M
m=1

∑Nm

n=1 qmnk +
∑

(βv′ − 1)

(57)

C.2 GD for LDA

The joint probability density can be expressed as:

p(W,Z, θ, φ|α, β) =

[
K∏
k=1

p(φk|β)

][
M∏
m=1

p(θm|α)

Nm∏
n=1

p(zmn|θm)p(wmn|φzmn
)

]

∝

[
K∏
k=1

V∏
v=1

φβ−1kv

][
M∏
m=1

(
K∏
k=1

θα−1mk

)
Nm∏
n=1

θmzmn
φzmnwmn

] (58)

The log-probability of joint model with Z marginalized can be written as:

log p(W, θ, φ|α, β) = log
∑
Z

p(W,Z, θ, φ|α, β)

=
M∑
m=1

Nm∑
n=1

log
K∑
k=1

p(zmn = k|θm)p(wmn|φk)

+

K∑
k=1

log p(φk|β) +

M∑
m=1

log p(θm|α)

=

M∑
m=1

Nm∑
n=1

log

K∑
k=1

θmkφkwmn

+

M∑
m=1

K∑
k=1

(αk − 1) log θmk +

K∑
k=1

V∑
v=1

(βv − 1) log φkv

(59)

Gradient for topic per document Now take derivative with respect to θmk:

∂ log p

∂θmk
=

Nm∑
j=1

φkwmn∑K
k′=1 θmk′φk′wmn

+
αk − 1

θmk

=
1

θmk

(
Nm∑
n=1

qmnk + αk − 1

) (60)

Manuscript under review by AISTATS 2016

Gradient for word per topic Now take derivative with respect to φkv:

∂ log p

∂φkv
=

M∑
m=1

Nm∑
n=1

θmkδ(v − wmn)∑K
k′=1 θmk′φk′wmn

+
βv − 1

φkv

=
1

φkv

(
M∑
m=1

Nm∑
n=1

qmnkδ(v − wmn) + βv − 1

) (61)

C.3 Equivalency

If we look at one step of EM:

For topic per document

θ+mk =
1

Nm +
∑

(αk′ − 1)

(
Nm∑
n=1

qmnk + αk − 1

)

=
θmk

Nm +
∑

(αk′ − 1)

∂ log p

∂θmk

Vectorize and can be re-written as:

θ+m = θm +
1

Nm +
∑

(αk′ − 1)

[
diag(θm)− θmθTm

] ∂ log p

∂θm
(62)

For word per topic

φ+kv =

∑M
m=1

∑Nm

n=1 qmnkδ(v − wmn) + βv − 1∑M
m=1

∑Nm

n=1 qmnk +
∑

(βv′ − 1)

=
φkv∑M

m=1

∑Nm

n=1 qmnk +
∑

(βv′ − 1)

∂ log p

∂φkv

Vectorize and can be re-written as:

θ+m = θm +
1

Nm +
∑

(αk′ − 1)

[
diag(θm)− θmθTm

] ∂ log p

∂θm
(63)

C.4 SEM for LDA

We summarize our SEM derivation for LDA as follows:

E-Step

qmnk =
θmkφkwmn∑K

k′=1 θmk′φk′wmn

(64)

S-step
zmn ∼ Categorical(qmn1, ..., qmnK) (65)

M-step

θmk =
Dmk + αk − 1

Nm +
∑

(αk′ − 1)

φkv =
Wkv + βv − 1

Tk +
∑

(βv′ − 1)

(66)

C.5 Equivalency

In case of LDA, let us consider only θ for the purpose of illustration. Now consider the case of stochastic EM,
the update over one step is:

θ+ik =
nik
Ni

=
1

Ni

Ni∑
j=1

δ(zij = k)

Manuscript under review by AISTATS 2016

Again vectorizing and re-writing as earlier:
θ+i = θi +Mg

where M = 1
Ni

[
diag(θi)− θiθTi

]
and g = 1

θik

∑Ni

j=1 δ(zij = k). The vector g can be shown to be an unbiased
noisy estimate of the gradient, i.e.

E[g] =
1

θik

Ni∑
j=1

E[δ(zij = k)]

=
1

θik

Ni∑
j=1

qijk =
∂ log p

∂θik

Thus, it is SGD with constraints. However, note that stochasticity does not arise from sub-sampling data as
usually in SGD, rather from the randomness introduced in the S-step.

Manuscript under review by AISTATS 2016

D Non-singularity of Fisher Information for Mixture Models

Let us consider a general mixture model:

p(x|θ, φ) =

K∑
k=1

θkf(x|φk) (67)

Then the log-likelihood can be written as:

log p(x|θ, φ) = log

(
K∑
k=1

θkf(x|φk)

)
(68)

The Fisher Information is given by:

I(θ, φ) = E
[
(∇ log p(x|θ, φ))(∇ log p(x|θ, φ))T

]
=

[∂
∂θ log p(x|θ, φ)
∂
∂φ log p(x|θ, φ)

] [∂
∂θ log p(x|θ, φ)
∂
∂φ log p(x|θ, φ)

]T
These derivatives can be computed as follows:

∂

∂θk
log p(x|θ, φ) =

∂

∂θk
log

(
(

K∑
k=1

θkf(x|φk)

)

=
f(x|φk)∑K

k′=1 θk′f(x|φk′)

∂

∂φk
log p(x|θ, φ) =

∂

∂φk
log

(
(

K∑
k=1

θkf(x|φk)

)

=
θk

∂
∂φk

f(x|φk)∑K
k′=1 θk′f(x|φk′)

(69)

For any u, v ∈ RK (with at least one nonzero), then the Fisher Information is positive definite as:

(uT vT)I

(
u
v

)
= (uT vT)E

 ∂

∂θ log
(∑K

k=1 θkf(X|φk)
)

∂
∂φ log

(∑K
k=1 θkf(X|φk)

) ∂
∂θ log

(∑K
k=1 θkf(X|φk)

)
∂
∂φ log

(∑K
i=1 θkf(X|φk)

) T
(u

v

)

= E

(uT ∂

∂θ
log

(
K∑
k=1

θkf(X|φk)

)
+ vT

∂

∂θ
log

(
K∑
i=1

θkf(X|φi)

))2

= E

(∑K
k=1 ukf(X|φk) + vkθk

∂
∂φk

f(X|φk)∑K
k=1 θkf(X|φk)

)2

This can be 0 if and only if
K∑
k=1

ukf(x|φi) + vkθk
∂

∂φk
f(x;φk) = 0 ∀x. (70)

In case of exponential family emission models this cannot hold if all components are unique and all θk > 0.
Thus, if we assume all components are unique and every component has been observed at least once, the Fisher
information matrix becomes non-singular.

Manuscript under review by AISTATS 2016

E Alias Sampling Method

The alias sampling method is an efficient method for drawing samples from a K outcome discrete distribution
in O(1) amortized time and we describe it here for completeness. Denote by pi for i ∈ {1 . . .K} the probabilities
of a distribution over K outcomes from which we would like to sample. If p were the uniform distribution, i.e.
pi = K−1, then sampling would be trivial. For the general case, we must pre-process the distribution p into a
table of K triples of the form (i, j, πi) as follows:

• Partition the indices {1 . . .K} into sets U and L where pi > K−1 for i ∈ U and pi ≤ K−1 for i ∈ L.
• Remove any i from L and j from U and add (i, j, pi) to the table.
• Update pj = pi + pj −K−1 and if pj > K−1 then add j to U , else to L.

By construction the algorithm terminates after K steps; moreover, all probability mass is preserved either in the
form of πi associated with i or in the form of K−1 − πi associated with j. Hence, sampling from p can now be
accomplished in constant time:

• Draw (i, j, πi) uniformly from the set of k triples in K.
• With probability Kπi emit i, else emit j.

Hence, if we need to draw from p at least K times, sampling can be accomplished in amortized O(1) time.

Manuscript under review by AISTATS 2016

F Applicability of ESCA

We begin with a simple Gaussian mixture model (GMM) with K components. Let x1, ..., xn be i.i.d. observa-
tions, z1, ..., zn be hidden component assignment variable and η = η(θ1, ..., θK , µ1,Σ1, µ2,Σ2, ..., µK ,ΣK) be the
parameters. Then the GMM fits into ESCA with sufficient statistics given by:

T (xi, zi) = [1{zi = 1}, ...,1{zi = K},
xi1{zi = 1}, ..., xi1{zi = K},
xix

T
i 1{zi = 1}, ..., xixTi 1{zi = K}].

(71)

The conditional distribution for the E-step is:

p(zi = k|xi; η) ∝ θkN (xi|µk,Σk) (72)

In the S-step we draw from this conditional distribution and the M-step, through inversion of link function, is:

θ̃k =
1

n+Kα−K

n∑
i=1

(1{zi = k}+ α− 1)

µ̃k =
κ0µ0 +

∑n
i=1 xi1{zi = k}

κ0 +
∑n
i=1 1{zi = k}

Σ̃k =
Ψ0 + κ0µ0µ

T
0 +

∑n
i=1 xix

T
i 1{zi = k} − (κ0 +

∑n
i=1 1{zi = k})µ̃kµ̃Tk

ν0 + d+ 2 +
∑n
i=1 1{zi = k}

(73)

and is only function of the sufficient statistics.

Next, we provide more details on how to employ ESCA for any conditional exponential family mixture model;
i.e., in which n random variables xi, i = 1, . . . , n correspond to observations, each distributed according to a
mixture of K components, with each component belonging to the same exponential family of distributions (e.g.,
all normal, all multinomial, etc.), but with different parameters:

p(xi|φ) = exp(〈ψ(xi), φ〉 − g(φ)). (74)

The model also has n latent variables zi that specify the identity of the mixture component of each observation
xi, each distributed according to a K-dimensional categorical distribution. A set of K mixture weights θk,
k = 1, . . . ,K, each of which is a probability (a real number between 0 and 1 inclusive) and collectively sum
to one. A Dirichlet prior on the mixture weights with hyper-parameters α. A set of K parameters φk, k =
1, . . . ,K, each specifying the parameter of the corresponding mixture component. For example, observations
distributed according to a mixture of one-dimensional Gaussian distributions will have a mean and variance for
each component. Observations distributed according to a mixture of V-dimensional categorical distributions (e.g.,
when each observation is a word from a vocabulary of size V) will have a vector of V probabilities, collectively
summing to 1. Moreover, we put a shared conjugate prior on these parameters:

p(φ;n0, ψ0) = exp (〈ψ0, φ〉 − n0g(φ)− h(m0, ψ0)) . (75)

Then joint sufficient statistics would be given by:

T (zi, xi) = [1{zi = 1}, ...,1{zi = K},
ψ(xi)1{zi = 1}, ..., ψ(xi)1{zi = K}]

(76)

In the E-step of tth iteration, we derive the conditional distribution p(zi|xi, η), namely

p(zi = k|xi, η) ∝ p(xi|φt−1k , zi = k)p(zi = k|θt−1)

=
θt−1k p(xi|φt−1k)∑
k′ θ

t−1
k′ p(xi|φt−1k′)

(77)

In the S-step we draw zti from this conditional distribution and the M-step through inversion of the link function

Manuscript under review by AISTATS 2016

yields:

∇g(φ̃k) =
φ0 +

∑
i ψ(xi)1{zi = k})

n0 +
∑
i 1{zi = k}

or φ̃k = ξ−1
(
ψ0 +

∑
i ψ(xi)1{zi = k}

n0 +
∑
i 1{zi = k}

)
θ̃k =

∑
i 1{zi = k}+ αk − 1

n+
∑
k αk − k

.

(78)

This encompasses most of the popular mixture models (and with slight more work all the mixed membership or
admixture models) with Binomial, multinomial, or Gaussian emission model, e.g. beta-binomials for identifica-
tion, Dirichlet-multinomial for text or Gauss-Wishart for images as listed in Table 1.

Note further, ESCA is applicable to models such as restricted Boltzmann machines (RBMs) as well which are
also in the exponential family. For example, if the data were a collection of images, each cell could independently
compute the S-step for its respective image. For RBMs the cell would flip a biased coin for each latent variable,
and for deep Boltzmann machines, the cells could perform Gibbs sampling.

To elabortate, consider 2-layer RBM (1 observed, 1 latent), then ESCA should work as it is. That is, we sample
latent variables conditioned on data and weights. Then optimize weights, given latent variables and observed
data. Now if we have deep RBM, i.e. one with many hidden layers. Then ESCA will have similar problem as
Ising model. But there is a quick fix borrowing ideas from chromatic samplers.

for each iteration

1. Sample all odd layers of the RBM
2. Optimize for weights
3. Sample all even layers of the RBM
4. Optimize for weights

end for

We save a precise derivation and empirical evaluation for future work.

Manuscript under review by AISTATS 2016

G More experimental results

In addition to the experiments reported in main paper, we perform another set of experiments. As before, to eval-
uate the strength and weaknesses of our algorithm, we compare against parallel and distributed implementations
of CGS and CVB0.

Software & hardware All three algorithms were first implemented in the Java programming language. (We
later switched to C++ for achieving better performance and those results are reported in the main paper.) To
achieve good performance in the Java programming language, we use only arrays of primitive types and pre-
allocate all of the necessary structures before the learning starts. We implement multithreaded parallelization
within a node using the work-stealing Fork/Join framework, and the distribution across multiple nodes using
the Java binding to OpenMPI. We also implemented a version of SCA with a sparse representation for the array
D of counts of topics per documents and Vose’s alias method to draw from discrete distributions. We run our
experiments on a small cluster of 16 nodes connected through 10Gb/s Ethernet. Each node has two 8-core Intel
Xeon E5 processors (some nodes have Ivy Bridge processors while others have Sandy Bridge processors) for a
total of 32 hardware threads per node and 256GB of memory.

Datasets We experiment on two datasets, both of which are cleaned by removing stop words and rare words:
Reuters RCV1 and English Wikipedia. Our Reuters dataset is composed of 806,791 documents comprising
105,989,213 tokens with a vocabulary of 43,962 vocabulary words. Our Wikipedia dataset is composed of
6,749,797 documents comprising 6,749,797 tokens with a vocabulary of 291,561 words. (Note this Wikipedia
dump was collected at a different time than the main paper, hence different numbers.) We also apply the SCA
algorithm to a third larger dataset composed of more than 3 billion documents comprising more than 171 billion
tokens with a vocabulary of about 140,000 words.

Protocol We use perplexity on held-out documents to compare the algorithms. When comparing algorithms
trained on Wikipedia, we compute the perplexity of 10,000 Reuters documents. Vice versa, when comparing
algorithms trained on Reuters, we compute the perplexity of 10,000 Wikipedia documents. We run four sets
of experiment on each dataset: (1) how perplexity evolves for some numbers of training iterations (100 topics);
(2) how perplexity evolves over time (100 topics); (3) perplexity as a function of the number of topics (75
iterations); and (4) perplexity as a function of the value of β (100 topics, 75 iterations). With the exception
of the second experiment, we ran all experiments five times with five different seeds, and report the mean and
standard deviation of these runs. The results are presented in Figure 6. We also ran an experiment to compare
vanilla SCA and its improved version that uses a sparse representation and Vose’s alias method for discrete
sampling. The results are presented in Figure 5.

●●●●●●●●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●

5000

7500

10000

12500

15000

0 5 10 15 20
Minutes

P
er

pl
ex

ity

Algorithm
● Sparse + Alias SCA

Vanilla SCA

(a) Wikipedia, K = 200, α = 0.1, β = 0.1

●●●●●●●●●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●

7500

10000

12500

15000

0 10 20 30 40
Minutes

P
er

pl
ex

ity

Algorithm
● Sparse + Alias SCA

Vanilla SCA

(b) Wikipedia, K = 500, α = 0.1, β = 0.1

Figure 5: Evolution of perplexity over time for plain SCA and a sparse one using the alias method.

Manuscript under review by AISTATS 2016

●●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●

8000

10000

12000

14000

0 20 40 60
Iterations

P
er

pl
ex

ity
Algorithm

● CGS
CVB0
SCA

(a) Reuters, K = 100, α = 0.1, β = 0.1

●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

8000

10000

12000

14000

16000

0 20 40 60
Iterations

P
er

pl
ex

ity

Algorithm
● CGS

CVB0
SCA

(b) Wikipedia, K = 100, α = 0.1, β = 0.1

●●●●●
●
●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●

7500

10000

12500

15000

0 2 4
Minutes

P
er

pl
ex

ity

Algorithm
● CGS

CVB0
SCA

(c) Reuters, K = 100, α = 0.1, β = 0.1

● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●7500

10000

12500

15000

0 10 20 30
Minutes

P
er

pl
ex

ity

Algorithm
● CGS

CVB0
SCA

(d) Wikipedia, K = 100, α = 0.1, β = 0.1

●

●

●

●
●

6500

7000

7500

100 200 300 400 500
Topics

P
er

pl
ex

ity Algorithm
● CGS

CVB0
SCA

(e) Reuters, α = 0.1, β = 0.1

●

●

●
●

●

6500

7000

7500

100 200 300 400 500
Topics

P
er

pl
ex

ity

Algorithm
● CGS

CVB0
SCA

(f) Wikipedia, α = 0.1, β = 0.1

●

●

● ●
●

7000

7500

8000

8500

0.0 0.1 0.2
Beta

P
er

pl
ex

ity

Algorithm
● CGS

CVB0
SCA

(g) Reuters, K = 100, α = 0.1

●

●

●
●

●

7000

7500

0.0 0.1 0.2
Beta

P
er

pl
ex

ity

Algorithm
● CGS

CVB0
SCA

(h) Wikipedia, K = 100, α = 0.1

Figure 6: Evolution of perplexity on Wikipedia and Reuters over number of iterations, time, number of topics,
value of β. Here SCA does not use alias method or sparsity and hence slower.

Manuscript under review by AISTATS 2016

Topics

Here are the first five topics inferred via ESCA on LDA from both PubMed and Wikipedia:

PubMed
Topic 0 Topic 1 Topic 2 Topic 3 Topic 4
seizures data local gene state
epilepsy information block transcript change
seizure available lidocaine exon transition
epileptic provide anethesia genes states
temporal lobe regarding anethetic expression occur
anticonvulsant sources acupuncture region process
convulsion literature bupivacaine mrna shift
kindling concerning anaesthesia mouse condition
partial limited under expressed changed
generalized provided anaesthetic human dynamic

Wikipedia
Topic 0 Topic 1 Topic 2 Topic 3 Topic 4
hockey medical von boy music
ice medicine german youth music
league hospital karl boys pop
played physician carl camp music
junior doctor friedrich girl artists
nhl clinical wilhelm scout electronic
professional md johann girls duo
games physicians ludwig guide genre
playing doctors prussian scouts genres
national surgeon heinrich scouting musicians

	Introduction
	Exponential SCA
	Latent Variable Exponential Family
	Stochastic EM
	ESCA for Latent Variable Models
	Wide applicability of ESCA
	Understanding the limitations of ESCA
	Convergence

	ESCA for LDA
	Existing systems
	An ESCA Algorithm for LDA
	Advantages of ESCA for LDA
	Connection to SGD

	Experiments
	Discussion
	(Stochastic) EM in General
	(S)EM Derivation for LDA
	LDA Model
	Expectation Maximization
	E-Step
	M-Step

	Introducing Stochasticity

	Equivalency between (S)EM and (S)GD for LDA
	EM for LDA
	GD for LDA
	Equivalency
	SEM for LDA
	Equivalency

	Non-singularity of Fisher Information for Mixture Models
	Alias Sampling Method
	Applicability of ESCA
	More experimental results

