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Abstract
Hierarchical Bayesian models often capture distri-
butions over a very large number of distinct atoms.
The need for these models arises when organizing
huge amount of unsupervised data, for instance,
features extracted using deep convnets that can
be exploited to organize abundant unlabeled im-
ages. Inference for hierarchical Bayesian models
in such cases can be rather nontrivial, leading to
approximate approaches. In this work, we propose
Canopy, a sampler based on Cover Trees that is
exact, has guaranteed runtime logarithmic in the
number of atoms, and is provably polynomial in
the inherent dimensionality of the underlying pa-
rameter space. In other words, the algorithm is as
fast as search over a hierarchical data structure.
We provide theory for Canopy and demonstrate its
effectiveness on both synthetic and real datasets,
consisting of over 100 million images.

1. Introduction
Fast nearest-neighbor algorithms have become a mainstay
of information retrieval (Beygelzimer et al., 2006; Liu et al.,
2007; Indyk & Motwani, 1998). Search engines are able to
perform virtually instantaneous lookup among sets contain-
ing billions of objects. In contrast, inference procedures for
clustering (Gibbs sampling, stochastic EM, or variational
methods) are often problematic even when dealing with
thousands of distinct objects. This is largely because, for
any inference methods, we potentially need to evaluate all
probabilities whereas search only needs the best instance.

While the above is admittedly an oversimplification of mat-
ters (after all, we can use Markov-Chain Monte Carlo meth-
ods for inference), it is nonetheless nontrivial to perform
exact sampling for large state spaces. In the current work, we
propose Canopy, an inference technique to address this issue
by marrying a fast lookup structure with an adaptive rejec-
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Figure 1. Canopy is much faster yet as accurate as other methods
like EM or ESCA (Zaheer et al., 2016). The bar graph shows time
per iteration while line plots the likelihood on held-out test set.
Results shown are for inference of a Gaussian mixture model with
32 million points having 4096 clusters at 1024 dimensions.

tion sampler. This leads to a surprisingly simple design for a
plethora of sampling-based inference algorithms. Moreover,
we provide runtime guarantees for Canopy that depend only
on the inherent dimensionality of both parameter and data
distributions. The expected depth for lookups is never worse
than logarithmic in the number of ‘clusters’ and the char-
acteristic length scale at which models can be sufficiently
well distinguished. Furthermore, we can parallelize Canopy
for hierarchical Bayesian models using stochastic cellular
automata (ESCA) (Zaheer et al., 2016), thus leading to an
extremely scalable and efficient system design.

Most latent variable models, e.g., Gaussian mixture models
(GMM), latent Dirichlet allocation (Blei et al., 2002), hidden
Markov models, Dirichlet process clustering (Neal, 1998),
or hierarchical generative models (Adams et al., 2010), have
the structure of the form:

p(x) =
∑
z

p(z)p(x|θz) (1)

where x denotes observed variables, z latent variables, and
θz parameters of the conditional. Often the conditional dis-
tribution p(x|θz) belongs to the exponential family, which
we assume to be the case as well. The inference procedure
on these models using either Gibbs sampling, stochastic vari-
ation methods, or ESCA would require to draw z ∼ p(z|x)
repeatedly. Naı̈vely producing these draws would be expen-
sive, especially when the number of latent classes is huge.
We aim to bring the per-iteration cost down from O(mn)
to Õ(m+ n), where m,n are the number of latent classes
and data points, respectively. For example, on GMM, the
proposed method Canopy is much faster than EM or ESCA,
while achieving the same accuracy as shown in Fig. 1.
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Our approach is as follows: we use cover trees (Beygelz-
imer et al., 2006) to design an efficient lookup structure for
p(x|θz) and approximate the values of p(x|θz) for a large
number of θz . In combination with an efficient node sum-
mary for p(z), this allows us to design a rejection sampler
that has an increasingly low rejection rate as we descend
the tree. Moreover, for large numbers of observations x, we
use another cover tree to aggregate points into groups of
similar points, perform expensive pre-computation of as-
signment probabilities p(z|x) only once, and amortize them
over multiple draws. In particular, the alias method (Walker,
1977) allows us to perform sampling in O(1) time once the
probabilities have been computed.

In summary, Canopy has three parts: construction of cover
trees for both parameters and data (Sec. 3.1, 3.2), an adaptive
rejection sampler at the top-level of the cover tree until
the data representation is sufficiently high to exploit it for
sampling (Sec. 3.2.1), and a rejection sampler in the leaves
(Sec. 3.2.2), whenever the number of clusters is large. Most
importantly, the algorithm becomes more efficient as we
obtain larger amounts of data since they lead to greater
utilization of the alias table in (Walker, 1977) as shown
by theoretical analysis in Sec. 4. This makes it particularly
well-suited to big data problems as demonstrated through
experiments in Sec. 5.

2. Background
We briefly discuss latent variable models, cover trees, and
the alias method needed to explain this work.

2.1. Latent Variable Models

The key motivation for this work is to make inference
in latent variable models more efficient. As expressed in
(1), we consider latent models which have mixtures of ex-
ponential family. The reasons for limiting to exponential
families are two fold. First, most of the mixture models
used in practice belong to this class. Second, assumptions
on model structure, for instance exponential family, al-
lows for efficient design of fast inference. In particular,
we first assume that updates to p(z) can be carried out
by modifying O(1) values at any given time. For instance,
for Dirichlet process mixtures, the collapsed sampler uses
p(zi = j|Z\ {zi}) = n−ij / (n+ α− 1). Here, n is the
total number of observations, n−ij denotes the number of
occurrences of zl = j when ignoring zi, and α is the con-
centration parameter. Second, the conditional p(x|θ) in (1)
is assumed to be a member of the exponential family, i.e.,

p(x|θ) = exp(〈φ(x), θ〉 − g(θ)). (2)

Here φ(x) represents the sufficient statistics and g(θz) is
the (normalizing) log-partition function.

Trying to find a metric data structure for fast retrieval is
not necessarily trivial for the exponential family. Jiang et al.
(2012) and Cayton (2008) design Bregman divergence based
methods for this problem. Unfortunately, such methods are
costlier to maintain and have less efficient lookup properties
than those using Euclidean distance, as computing and op-
timizing over Bregman divergences is less straightforward.
For example, whenever we end up on the boundary of the
marginal polytope, as is common with natural parameters
associated with single observations, optimization becomes
intractable. Fortunately, this problem can be avoided entirely
by rewriting the exponential family model as

p(x|θ) = e〈(φ(x),−1),θ,g(θ)〉 = e〈φ̃(x),θ̃〉 (3)

where φ̃(x) := (φ(x),−1) and θ̃ := (θ, g(θ)).

In this case, being able to group similar θ̃ together allows
us to assess their contributions efficiently without having to
inspect individual terms. Finally, we assume that

∥∥∥φ̃(xi)
∥∥∥ ≤

R and
∥∥∥θ̃z∥∥∥ ≤ T for all i and for all z ∈ Z respectively.

2.2. Alias Sampler

A key component of Canopy is the alias sampler (Walker,
1977; Vose, 1991). Given an arbitrary discrete probabil-
ity distribution on n outcomes, it allows for O(1) sam-
pling once an O(n) preprocessing step has been performed.
Hence, drawing n observations from a distribution over n
outcomes costs an amortized O(1) per sample. Sec. A in
appendix has more details.

2.3. Cover Trees

Cover Trees (Beygelzimer et al., 2006) and their improved
version (Izbicki & Shelton, 2015) are a hierarchical data
structure that allow fast retrieval in logarithmic time. The
key properties are: O(n log n) construction time, O(log n)
retrieval, and polynomial dependence on the expansion con-
stant (Karger & Ruhl, 2002) of the underlying space, which
we refer to as c. Moreover, the degree of all internal nodes
is well controlled, thus giving guarantees for retrieval (as
exploited by (Beygelzimer et al., 2006)), and for sampling
(as we will be using in this paper).

Cover trees are defined as an infinite succession of levels
Si with i ∈ Z. Each level i contains (a nested subset of) the
data with the following properties:

• Nesting property: Si−1 ⊆ Si.
• All x, x′ ∈ Si satisfy ‖x− x′‖ ≥ 2i.
• All x ∈ Si+1 have a parent in x′ ∈ Si, possibly with
x = x′, with ‖x− x′‖ ≤ 2i.

• As a consequence, the subtree for any x ∈ Si has
distance at most 2i from x.

Please refer to appendix Sec. C for more details.
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3. Our Approach
Now we introduce notation and explain details of our
approach when the number of clusters is (a) moderate
(Sec. 3.1) and (b) large (Sec. 3.2). In what follows, the
number of data points and clusters are denoted with n and
m respectively. The function ch(x) returns children of a
node x of any tree.
Data tree (TD): Cover tree built with levels Sj on all
available data using the sufficient statistic φ(x), constructed
once for our setup. We record ancestors at level j as pro-
totypes x̄ for each data point x. In fact, we only need to
construct the tree up to a fixed degree of accuracy ̄ in case
of moderate number of clusters. A key observation is that
multiple points can have a same prototype x̄, making it a
many-to-one map. This helps us amortize costs over points
by re-using proposal computed with x̄ (Sec. 3.1).
Cluster tree (TC): Similarly, TC is the cover tree gener-
ated with cluster parameters θ̃z . For simplicity, we assume
that the expansion rates of clusters and data are both c.

3.1. Canopy I: Moderate number of clusters

We introduce our sampler, Canopy I, when the number of
clusters is relatively small compared to the total number of
observations. This addresses many cases where we want to
obtain a flat clustering on large datasets. For instance, it is
conceivable that one might not want to infer more than a
thousand clusters for one million observations. In a nutshell,
our approach works as follows:
1. Construct TD and pick a level ̄ ∈ Z with accuracy 2̄

such that the average number of elements per node in S̄
is O(m).

2. For each of the prototypes x̄, which are members of S̄,
compute p(z|x̄) using the alias method to draw from
m components θz . By construction, this cost amortizes
O(1) per observation, i.e., a total cost of O(n).

3. For each observation x with prototype x̄, perform
Metropolis-Hastings sampling using the draws from
p(z|x̄) =: q(z) as proposal. Hence we accept an MH
move from z to z′ with probability

π := min

(
1,
p(z′|x)p(z|x̄)

p(z|x)p(z′|x̄)

)
. (4)

The key reason why this algorithm has a useful acceptance
probability is that the normalizations for p(z|x) and p(z|x̄),
and likelihoods p(z) and p(z′) cancel out respectively. Only
terms remaining in (4) are

π = min (1, exp (〈φ(x)− φ(x̄), θz′ − θz〉)) ≥ e−2̄+1L

for ‖θz‖ ≤ L. This follows from the Cauchy Schwartz
inequality and the nesting property of cover trees, that all
children of x̄ are no more than 2̄ apart from each other, i.e.,
‖φ(x)− φ(x̄)‖ ≤ 2̄.

3.2. Canopy II: Large number of clusters

The key difficulty in dealing with many clusters is that it
forces us to truncate TD at a granularity in x that is less pre-
cise than desirable in order to benefit from the alias sampler
naively. In other words, for a given sampling complexity, a
larger m reduces the affordable granularity in x. The prob-
lem arises because we are trying to distinguish clusters at a
level of resolution that is too coarse. A solution is to apply
cover trees not only to observations but also to the clusters
themselves, i.e., use both TD and TC . This allows us to de-
crease the minimum observation-group size at the expense
of having to deal with an aggregate of possible clusters.

Our method for large number of clusters operates in two
phases: (a) Descend the hierarchy in cover trees while sam-
pling (Sec. 3.2.1) (b) Sample for a single observation x from
a subset of clusters arranged in TC (Sec. 3.2.2), when appro-
priate conditions are met in (a). We begin with initialization
and then elaborate each of these phases in detail.
Initialize 1: Construct TC and for each node θz , assign
α(i, z) = p(z), where i is the highest level Si such that
z ∈ Si, else 0. Then perform bottom-up aggregation via

β(i, z) = α(i, z) +
∑

z′∈ch(z)

β(i+ 1, z′) (5)

This creates m entries β(z) as TC has exactly m nodes.
Notice that aggregated value β(z) captures the probability
of θz and its children in TC .
Initialize 2: Partition both the observations and the clus-
ters at a resolution that allows for efficient sampling and
precomputation. More specifically, we choose accuracy lev-
els ı̂ and ̂ to truncate TD and TC , so that there are n′ and
m′ nodes respectively after truncation. These serve as parti-
tions for data points and clusters such that n′ ·m′ = O(m)
is satisfied. The aggregate approximation error

δ := 2ı̂L+ 2̂R+ 2ı̂+̂+1 (6)

due to quantizing observations and clusters is minimized
over the split, searching over the levels.

3.2.1. DESCENDING TD AND TC

Given TD and TC with accuracy levels ı̂ and ̂, we now
iterate over the generated hierarchy, as shown in Fig. 2. We
recursively descend simultaneously in both the trees until
the number of observations for a given cluster is too small.
In that case, we simply default to the sampling algorithm de-
scribed in Sec. 3.2.2 for each observation in a given cluster.

The reasoning works as follows: once we have the partition-
ing into levels ı̂, ̂ for data and clusters respectively with
n′ ·m′ = O(m), we draw from the proposal distribution

q(z̄|x) ∝ β(θz̄) exp (〈φ(x̄), θz̄〉 − g(θz̄)) (7)
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Figure 2. Hierarchical partitioning over both data observations and
clusters. The accuracy at a particular level is indicated by rows for
observations and columns for clusters. Once we sample clusters
at a coarser level, we descend the hierarchy and sample at a finer
level, until we have few number of points per cluster. We then
default to Sec. 3.2.1 for rejection sampler.

for all the observations and clusters above the partitioned
levels ı̂ and ̂, respectively. That is, we draw from a distribu-
tion where both observations and clusters are grouped. We
draw from the proposal for each x in TD truncated at level ı̂.
Here, β(θz̄) collects the prior cluster likelihood from z̄ and
all its children. As described earlier, we can use the alias
method for sampling efficiently from (7).

Within each group of observations, drawing from (7) leads
to a distribution over a (possibly smaller) subset of cluster
groups. Whenever the number of observations per cluster
group is small, we default to the algorithm described in
Sec. 3.2.2 for each observation. On the other hand, if we
have a sizable number of observations for a given cluster,
which should happen whenever the clusters are highly dis-
criminative for observations (a desirable property for a good
statistical model), we repeat the strategy on the subset to re-
duce the aggregate approximation error (6). In other words,
we descend the hierarchy to yield a new pair (i′, j′) on the
subset of clusters/observations with i′ < ı̂ and j′ < ̂ and
repeat the procedure.

The process works in a depth-first fashion in order to avoid
using up too much memory. The sampling probabilities
according to (7) are multiplied out for the path over the
various hierarchy levels and used in a Metropolis-Hastings
procedure. Each level of the hierarchy can be processed in
O(1) operations per instance, without access to the instance
itself. Moreover, we are guaranteed to descend by at least
one step in the hierarchy of observations and clusters, hence
the cost is at most O(c2 min(log n, logm)).

Note that the acceptance probabilities are always at least as
high as the bounds derived in Sec. 3.1 since the errors on
the paths are log-additive. An alternative would be to use a
rejection sampler. Details are omitted for the sake of brevity
and since they mirror the single-observation argument of
the following section.

3.2.2. SAMPLING FOR A SINGLE OBSERVATION x

Let x be the single observation for which we want to sam-
ple from possibly subset of clusters z that are arranged in
TC . In this case, we hierarchically descend TC using each
aggregate as a proposal for the clusters below. As before,
we can either use MH sampling or a rejection sampler. To
illustrate the effects of the latter, we describe one below,
whose theoretical analysis is provided in Sec. 4. If we are
able to approximate p(x|θz) by some qz such that

e−εp(x|θz) ≤ qz ≤ eεp(x|θz) (8)

then it follows that a sampler drawing z from

z ∼ qzp(z)∑
z′ qz′p(z

′)
(9)

and then accepting with probability e−εq−1
z p(x|θz) will

draw from p(z|x) (see Appendix Sec. B for details). More-
over, the acceptance probability is at least e−2ε. We will
obtain such a bound by successively approximating the set
of θz via cover tree TC using the sampler described below:

1. Choose approximation level ı̂ and set e−ε = e−2ı̂‖φ̃(x)‖
as multiplier for the acceptance threshold of the sampler.

2. Compute normalization at accuracy level ı̂

γ :=eε
∑
z∈Sı̂

β(̂ı, z) exp
〈
θ̃z, φ̃(x)

〉
(10)

3. Draw ξ ∼ U [0, 1].
4. Draw a child z ∈ Sı̂ with probability δz :=

e−εγ−1β(̂ı, z) exp
〈
θ̃z, φ̃(x)

〉
and restrict ξ to fall into

the interval [0, δz]. Denote this child by zı̂.
5. Accept θz (we bail out at the current level ı̂) with prob-

ability γ−1p(z) exp
〈
θ̃z, φ̃(x)

〉
and reduce ξ by this

amount if we do not accept, for recycling ξ again.
6. For i := ı̂− 1 to −∞ do
i. Set e−ε = e−2i‖φ̃(x)‖ as the new accuracy level.

ii. Draw one of the children z of zi+1 with probability
δz := εγ−1β(i, z) exp

〈
θ̃z, φ̃(x)

〉
and restrict ξ to fall

into the interval [0, δz], i.e. we recycle the random vari-
able ξ. Exit if we do not draw any of them (since∑
z δz ≤ 1) and restart from step 3.

iii. Accept θz at the current level with
γ−1p(z) exp

〈
θ̃z, φ̃(x)

〉
and reduce ξ by this amount if

we do not accept, for recycling ξ again. Do not include
zi+1 in this setting since we may only accept θz the first
time we encounter it.

The above describes a rejection sampler that keeps on upper-
bounding the probability of accepting a particular cluster or
any of its children. It is as aggressive as possible at retaining
tight lower bounds on the acceptance probability such that
not too much effort is wasted in traversing the cover tree to
the bottom, i.e., we attempt to reject as quickly as possible.
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4. Theoretical Analysis
The main concern is to derive a useful bound regarding the
runtime required for drawing a sample. Secondary concerns
are those of generating the data structure. We address each
of these components, reporting all costs per data point.
Construction The data structure TD costs O(c6 log n)
(per data-point) to construct and TC costs O(c6 logm) (per
data-point, as m < n) — all additional annotations cost
negligible time and space. This includes computing α and
β, as discussed above.
Startup The first step is to draw from Sı̂. This costs
O(|Sı̂|) for the first time to compute all probabilities and
to construct an alias table. Subsequent samples only cost
3 CPU cycles to draw from the associated alias table. The
acceptance probability at this step is ε. Hence the aggregate
cost for the top level is bounded by O

(
|Sı̂|+ e2ı̂‖φ̃(x)‖

)
.

Termination To terminate the sampler successfully, we
need to traverse TC at least once to its leaf in the worst case.
This costs O(c6 logm) if the leaf is at maximum depth.
Rejections The main effort of the analysis is to obtain
useful guarantees for the amount of effort wasted in drawing
from the cover tree. A brute-force bound immediately would
yield O

(
e2ı̂‖φ̃(x)‖c6 logm

)
. Here the first term is due to

the upper bound on the acceptance probability, a term of c4

arises from the maximum number of children per node and
lastly the c2 logm term quantifies the maximum depth. It
is quite clear that this term would dominate all others. We
now derive a more refined (and tighter) bound.

Essentially we will exploit the fact that the deeper we de-
scend into the tree, the less likely we will have wasted com-
putation later in the process. We use the following relations

ex − 1 ≤ xea for x ∈ [0, a] and
∞∑
l=1

2−l = 1. (11)

In expectation, the first step of the sampler requires ε−1 =

e2ı̂‖φ̃(x)‖ steps until a sample is accepted. Thus, ε−1 − 1
effort is wasted. At the next level below we waste at most
e2ı̂−1‖φ̃(x)‖ effort. Note that we are less likely to visit this
level commensurate with the acceptance probability. These
bounds are conservative since any time we terminate above
the very leaf levels of the tree we are done. Moreover, not
all vertices have children at all levels, and we only need
to revisit them whenever they do. In summary, the wasted
effort can be bounded from above by

c4
∞∑
i=1

[
e2ı̂−i‖φ̃(x)‖ − 1

]
≤ c4e2ı̂‖φ(x)‖

∞∑
i=1

2−i = c4e2ı̂‖φ(x)‖.

Here c4 was a consequence of the upper bound on the num-
ber of children of a vertex. Moreover, note that the exponen-
tial upper bound is rather crude, since the inequality (11) is

very loose for large a. Nonetheless we see that the rejection
sampler over the tree has computational overhead indepen-
dent of the tree size! This result is less surprising than it may
seem. Effectively we pay for lookup plus a modicum for the
inherent top-level geometry of the set of parameters.

Theorem 1 The cover tree sampler incurs worst-case com-
putational complexity per sample of

O
(
|Sı̂|+ c6 log n+ c6 logm+ c4e2ı̂‖φ̃(x)‖

)
(12)

Note that the only data-dependent terms are c, Sı̂, ı̂ and∥∥∥φ̃(x)
∥∥∥ and that nowhere the particular structure of p(z)

entered the analysis. This means that our method will work
equally well regardless of the type of latent variable model
we apply. For example, we can even apply the model to
more complicated latent variable models like latent Dirich-
let allocation (LDA). The aforementioned constants are all
natural quantities inherent to the problems we analyze. The
constant c quantifies the inherent dimensionality of the pa-
rameter space,

∥∥∥φ̃(x)
∥∥∥ measures the dynamic range of the

distribution, and Sı̂, ı̂ measure the “packing number” of the
parameter space at a minimum level of granularity.

5. Experiments
We now present empirical studies for our fast sampling tech-
niques in order to establish that (i) Canopy is fast (Sec. 5.1),
(ii) Canopy is accurate (Sec. 5.2), and (iii) it opens new
avenues for data exploration and unsupervised learning
(Sec. 5.3), previously unthinkable. To illustrate these claims,
we evaluate on finite mixture models, more specifically,
Gaussian Mixture models (GMM), a widely used probabilis-
tic models. However, the proposed method can be applied
effortlessly to any latent variable model like Topic Modeling
through Gaussian latent Dirichlet allocation (Gaussian LDA)
(Das et al., 2015). We pick GMMs due to their wide-spread
application in various fields spanning computer vision, nat-
ural language processing, neurobiology, etc.
Methods For each experiment, we compare our two sam-
plers (Canopy I, Section 3.1 and Canopy II, Section 3.2)
with both the traditional Expectation Maximization (EM)
(Dempster et al., 1977) and the faster Stochastic EM through
ESCA (ESCA) (Zaheer et al., 2016) using execution time,
cluster purity, and likelihood on a held out TEST set.
Software & hardware All the algorithms are imple-
mented multithreaded in simple C++11 using a distributed
setup. Within a node, parallelization is implemented using
the work-stealing Fork/Join framework, and the distribu-
tion across multiple nodes using the process binding to a
socket over MPI. We run our experiments on a cluster of 16
Amazon EC2 c4.8xlarge nodes connected through 10Gb/s
Ethernet. There are 36 virtual threads per node and 60GB
of memory. For purpose of experiments, all data and calcu-
lations are carried out at double floating-point precision.
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(a) Varying n with fixed
(m, d) = (210, 210)

(b) Varying m with fixed
(n, d) = (225, 210)

(c) Varying m with n =
215m and d = 210

(d) Varying m with fixed
(n, d) = (225, 210)

Figure 3. Showing scalability of per-iteration runtime of different algorithms with increasing dataset size. From Fig. 3a, 3b, and 3c
we see that our approaches take orders of magnitude less time compared to the traditional EM and ESCA methods, while varying
the number of points and clusters respectively. Note that we trade off memory for speed as seen from Fig. 3d. For instance, with
(n,m, d) = (32mil, 4096, 1024), we see that there is a speed-up of 150× for a mere 2× memory overhead.

Initialization Recall that speed and quality of inference
algorithms depend on initialization of the random variables
and parameters. Random initializations often lead to poor re-
sults, and so many specific initialization schemes have been
proposed, like KMeans++ (Arthur & Vassilvitskii, 2007), K-
MC2 (Bachem et al., 2016). However, these initializations
can be costly, roughly O(mn).

Our approach provides a good initialization using cover trees
free of cost, as the construction of cover tree is at the heart of
our sampling approach. The proposed initialization scheme
relies on the observation that cover trees partition the space
of points while preserving important invariants based on
its structure. They thus help in selecting initializations that
span the entirety of space occupied by the points, which is
desired to avoid local minima. The crux of the approach is to
descend to a level l in TD such that there are no more than
m points at level l. These points from level l are included
in set of initial points I . We then randomly pick a point
from I such that it belongs to level l and replace it with
its children from level l + 1 in I . This is repeated until we
finally have m elements in I . The chosen m elements are
mapped to parameter space through the inverse link function
g−1(·) and used as initialization. All our experiments use
cover tree based initializations. We also make comparisons
against random and KMeans++ in Sec. 5.2.

5.1. Speed

To gauge the speed of Canopy, we begin with inference on
GMMs using synthetic data. Working with synthetic data is
advantageous as we can easily vary parameters like number
of clusters, data points, or dimensionality to study its effect
on the proposed method. Note that, from a computational
perspective, data being real or synthetic does not matter as
all the required computations are data independent, once the
cover tree has been constructed.
Synthetic Dataset Generation Data points are assumed
to be i.i.d. samples generated from m Gaussian probability

distributions parameterized by (µ∗i ,Σ
∗
i ) for i = 1, 2, · · · ,m,

which mix with proportions given by π∗i . Our experiments
operate on three free parameters: (n,m, d) where n is the
total number of points,m is the number of distributions, and
d is the dimensionality. For a fixed (n,m, d), we randomly
generate a TRAIN set of n points as follows: (1) Randomly
pick parameters (µ∗i ,Σ

∗
i ) along with mixing proportions π∗i ,

for i = 1, 2, · · · ,m, uniformly random at some scale. (2)
To generate each point, select a distribution based on {π∗i }
and sample from the corresponding d-dimensional Gaussian
pdf. Additionally, we also generate another set of points as
TEST set using the same procedure. For all the four models
(Canopy I, Canopy II, EM, ESCA), parameters are learnt
using TRAIN and Likelihood of the TEST set is used as
evaluation.

Observations We run all algorithms for a fixed number
of iterations and vary n,m, d individually to investigate the
respective dependence on performance of our approach as
shown in Fig. 3. We make the following observations: (1)
Overall, Fig. 3 is in line with our claim that the proposed
method reduced the per iteration complexity from O(nm)
of EM/ESCA to Õ(n + m). (2) To illustrate this further,
we consider n = O(m) and vary m (shown in Fig. 3c).
While EM and ESCA have per-iteration time of O(mn),
i.e., O(m2) in this case, our Canopy I and Canopy II show
Õ(m+ n), i.e., Õ(m). (3) However, there is no free lunch.
The huge speed-up comes at the cost of increased memory
usage (for storing the data-structures). For example, in the
case of n = 32 mil, m = 4096, and d = 1024 (Fig. 1), a
mere 2× increase in memory gets us a speed up of 150×.

5.2. Correctness

Next, we demonstrate correctness of Canopy using medium
sized real world datasets with labels, i.e., ground truth group-
ing of the points are known. We setup an unsupervised clas-
sification task on these datasets and perform evaluation on
both cluster purity and loglikelihood.
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Figure 4. Plots of cluster purity and loglikehood of ESCA, Canopy I, and Canopy II on benchmark real datasets –MNIST8m and
CIFAR-100. All three methods have roughly same performance on cluster purity. See Sec. 5.2 for more details.

Datasets We use two benchmark image datasets–
MNIST8m (Loosli et al., 2007) and CIFAR-100 (Krizhevsky
& Hinton, 2009). The former contains 8 million annotated
handwritten digits of size 28× 28, giving us data points of
dimension 784. CIFAR-100, on the other hand, contains 50k
images annotated with one of 100 object categories. Each
image has 3 channels (RGB) and of size 32× 32, resulting
in a vector of dimension 3072.

Unsupervised Classification: We run unsupervised clas-
sification on the above two datasets and evaluate using clus-
ter purity and loglikelihood. Here, cluster purity is defined
as the mean of accuracy across all clusters, where each
cluster is assigned the class of majority of its members. In
addition to using data points as is, we also experiment with
unsupervised features learnt from a Denoising Autoencoder
(Hinton & Salakhutdinov, 2006). We extract 30 and 256
dimensional features for MNIST8m and CIFAR-100 respec-
tively. Details of our unsupervised feature extraction are in
Appendix E. Further, we evaluate in multiple scenarios that
differ in (a) number of clusters: m = 10, 100 for MNIST8m
and m = 100, 500 for CIFAR-100, and (b) parameter ini-
tializations (Random, Kmeans++ and CTree).

Observations: Fig. 4 shows our results on MNIST8m
(m = 10, 100) and CIFAR-100 (m = 100, 500), with error
bars computed over 5 runs. Here are the salient observa-
tions: (1) All the methods (SEM, Canopy I, Canopy II) have
roughly the same cluster purity with Canopy II outperform-
ing in CIFAR-100 (256 dim) and MNIST8m by around
10% and 3% respectively. In CIFAR-100, SEM does slightly
better than other methods by 2-3%. (2) Similar results are
obtained for loglikelihood except for MNIST8m, where
SEM heavily outperforms Canopy. However, note that log-
likelihood results in an unsupervised task can be misleading
(Chang et al., 2009), as evidenced here by superior perfor-
mance of Canopy in terms of cluster purity.

5.3. Scalability - A New Hope

Finally, we demonstrate the scalability of our algorithm
by clustering a crawled dataset having more than 100 mil-
lion images that belong to more than 80,000 classes. We
query Flickr1 with the key words from WordNet (Fellbaum,
1998) and downloaded the returned images for each key
word, those images roughly belong to the same category.
We extracted the image features of dimension 2048 with
ResNet (He et al., 2015; 2016) – the state-of-the-art convo-
lutional neural network (CNN) on ImageNet 1000 classes
data set–using publicly available pre-trained model of 200
layers2. It takes 5 days with 20 GPUs to extract these fea-
tures for all the images. We then use Canopy II to cluster
these images with m = 64000, taking around 27 hours.

Observations For a qualitative assessment, we randomly
pick four clusters and show four images (more in Ap-
pendix F) closest to the means in Fig. 5 (each cluster in a
row). We highlight two important observations: (a) Though
the underlying visual feature extractor, ResNet, is trained
on 1000 semantic classes, our clustering is able to discover
semantic concepts that go beyond. To illustrate, images from
the first row indicate a semantic class of crowd even though
ResNet never received any supervision for such a concept.
(b) The keywords associated with these images do not nec-
essarily collate with the semantic concepts in the image. For
example, images in first row are associated with key words
‘heave’ ,‘makeshift’, ‘bloodbath’, and ‘fullfillment’, respec-
tively. It is not too surprising as the relatedness of retrieved
images for a query key word generally decreases for lower
ranked images. This suggests that pre-processing images to
obtain more meaningful semantic classes could potentially
improve the quality of labels used to learn models. Such a
cleanup would definitely prove beneficial in learning deep
image classification models from weakly supervised data.

1http://www.flickr.com/
2github.com/facebook/fb.resnet.torch

http://www.flickr.com/
github.com/facebook/fb.resnet.torch
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Figure 5. Illustration of concepts captured by clustering images in the ResNet (He et al., 2015; 2016) feature space. We randomly pick
three clusters and show four closest images (one in each row), possibly denoting the semantic concepts of ‘crowd’, ‘ocean rock scenery’
and ‘horse mounted police’. Our clustering discovers new concepts beyond the Resnet supervised categories (does not include ‘crowd’).

6. Discussion
We present an efficient sampler, Canopy, for mixture models
over exponential families using cover trees that brings the
per-iteration cost down from O(mn) to Õ(m + n). The
use of cover trees over both data and clusters combined
with alias sampling can significantly improve sampling time
with no effect on the quality of the final clustering. We
demonstrate speed, correctness, and scalability of Canopy
on both synthetic and large real world datasets. To the best
of our knowledge, our clustering experiment on a hundred
million images is the largest to be reported. We conclude
with some related works and future extensions.

Related works There has been work using nearest-
neighbor search for guiding graphical model inference like
kd-trees (Moore, 1999; Gray & Moore, 2000). But use of
kd-trees is not scalable with respect to dimensionality of the
data points. Moreover, kd-trees could be deeper (especially
for small c) and do not have special properties like covering,
which can be exploited for speeding up sampling. We ob-
serve this empirically when training kd-tree based methods
using publicly available code3. The models fail to train for
dimensions greater than 8, or number of points greater than
few thousands. In contrast, our method handles millions of
points with thousands of dimensions.

Further approximations From our experiments, we ob-
serve that using a simplified single observation sampling in
Canopy II works well in practice. Instead of descending on

3http://www.cs.cmu.edu/˜psand/

the hierarchy of clusters, we perform exact proposal com-
putation for k closest clusters obtained through fast lookup
from TC . All other clusters are equally assigned the least
out of these k exact posteriors.

In the future, we plan to integrate Canopy with:

Coresets Another line of work to speed up mixture mod-
els and clustering involves finding a weighted subset of
the data, called coreset (Lucic et al., 2016; Feldman et al.,
2013). Models trained on the coreset are provably com-
petitive with those trained on the original data set. Such
approaches reduce the number of samples n, but perform
traditional inference on the coreset. Thus, our approach can
be combined with coreset for additional speedup.

Inner product acceleration In an orthogonal direction
to Canopy, several works (Ahmed et al., 2012; Mussmann
& Ermon, 2016) have used maximum inner product search
to speed up inference and vice versa (Auvolat et al., 2015).
We want to incorporate these ideas into Canopy as well,
since the inner product is evaluated m times each iteration,
it becomes the bottleneck for large m and d. A solution
to overcome this problem would be to use binary hashing
(Ahmed et al., 2012) as a good approximation and therefore
a proposal distribution with high acceptance rate.

Combining these ideas, one could build an extremely scal-
able and efficient system, which potentially could bring
down the per-iteration sampling cost from O(mnd) to
Õ(m+ n+ d) or less!

http://www.cs.cmu.edu/~psand/
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A. Alias Sampler
A key component is the alias sampler of (Walker, 1977). Given an arbitrary discrete probability distribution on n outcomes, it
allows forO(1) sampling once anO(n) preprocessing step has been performed. Hence, drawing n observations a distribution
over n outcomes costs an amortized O(1) per sample. Given probabilities πi with π ∈ Pn the algorithm proceeds as follows:

• Decompose {1, . . . n} into sets L,H with i ∈ L if πi < n−1 and i ∈ H otherwise.
• For each i ∈ L pick some j ∈ H .

– Append the triple (i, j, πi) to an array A
– Set residual π′j := πj + πi − n−1

– If π′j > n−1 return π′j to H , otherwise to L.

Preprocessing takes O(n) computation and memory since we remove one element at a time from L.

• To sample from the array pick u ∼ U(0, 1) uniformly at random.
• Choose the tuple (i, j, πi) at position bunc.
• If u− n−1bunc < πi return i, else return j.

This step costs O(1) operations and it follows by construction that i is returned with probability πi. Now we need a data
structure that will allow us to sample many objects in bulk without the need to inspect each item individually. Cover trees
satisfy this requirement.

B. Rejection Sampling
The proof for the proposed rejection sampler in case of sampling a cluster for a single observation x is as follows. If we
approximate p(x|θz) by some qz such that

e−εp(x|θz) ≤ qz ≤ eεp(x|θz) (13)

then it follows that a sampler drawing z from

z ∼ qzp(z)∑
z′ qz′p(z

′)
(14)

and then accepting with probability e−εq−1
z p(x|θz) will draw from p(z|x). To prove this, we simply compute the probability

of this sampler r(z) to return a particular value z. The sample returns z when it (a) samples and accepts z, or (b) samples any
value, rejects it to proceed to next iteration of sampling. Using γ =

∑
z′ qz′p(z

′) and γT =
∑
z′ p(x|θz′)p(z′) to denote

normalization for proposal and true posterior respectively, we have:

r(z) =
qzp(z)

γ
e−εq−1

z p(x|θz) +
∑
z′

(1− e−εq−1
z′ p(x|θz′))

qz′p(z
′)

γ
r(z) (15)

=
e−ε

γ
p(z)p(x|θz) +

r(z)

γ

∑
z′

qz′p(z
′)− r(z)e

−ε

γ

∑
z′

p(x|θz′)p(z′) (16)

=
e−ε

γ
p(z)p(x|θz) + r(z)− r(z)e

−ε

γ
γT (17)

r(z) =
p(z)p(x|θz)

γT
(18)

Hence the procedure will draw from the true posterior p(z|x).

C. Cover Trees
Cover Trees (Beygelzimer et al., 2006) and their improved version (Izbicki & Shelton, 2015) form a hierarchical data
structure that allows fast retrieval in logarithmic time. The key properties for the purpose of this paper are that it allows for
O(n log n) construction time, O(log n) retrieval, and that it only depends polynomially on the expansion rate (Karger &
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(a) Expansion rate (b) Separation property (c) Covering property

Figure 6. Illustration of various properties of covering tree.

Ruhl, 2002) of the underlying space, which we refer to as c. Moreover, the degree of all internal nodes is well controlled,
thus giving guarantees for retrieval (as exploited in (Beygelzimer et al., 2006)), and for sampling (as we will be using in this
paper).

The expansion rate of a set, due to (Karger & Ruhl, 2002) captures several key properties.

Definition 2 (Expansion Rate) Denote by Bρ(r) a ball of radius of r centered at ρ. Then a set S has a (l, c) expansion
rate iff all r > 0 and ρ ∈ S satisfy

|Bρ(r) ∩ S| ≥ l =⇒ |Bρ(2r) ∩ S| ≤ c |Bρ(r) ∩ S| . (19)

In the following we set l = O(log |S|), thus referring to c simply as the expansion rate of S.

Cover trees are defined as an infinite succession of levels Si with i ∈ Z. Each level i contains (a nested subset of) the data
with the following properties:

• Nesting property: Si−1 ⊆ Si.
• Separation property: All x, x′ ∈ Si satisfy ‖x− x′‖ ≥ 2i.
• All x ∈ Si−1 have a parent in x′ ∈ Si, possibly with x = x′, with ‖x− x′‖ ≤ 2i.
• As a consequence, the subtree for any x ∈ Si has distance at most 2i from x.

Clearly we need to reperesent each x only once, namely in terms of Si with the largest i for which x ∈ Si holds. This data
structure has a number of highly desirable properties, as proved in (Beygelzimer et al., 2006). We list the most relevant ones
below:

• The depth of the tree in terms of its explicit representation is at most O(c2 log n).

• The maximum degree of any node is O(c4).

• Insertion & removal take at most O(c6 log n) time.

• Retrieval of the nearest neighbor takes at most O(c12 log n) time.

• The time to construct the tree is O(c6n log n).

The fast lookup of cover tree is built upon the implicit assumption in terms of the distinguishability of parameters θz , which
we also borrow in Canopy. This is related to the issue that if we had many choices of θz that, a-priori, all looked quite
relevant yet distinct, we would have no efficient means of evaluating them short of testing all by brute force. Note that this
could be achieved, e.g. by using the fast hash approximation of a sampler in (Ahmed et al., 2012). This is complementary to
the present paper.

D. Theoretical Analysis
Some more conclusions we can make about the algorithm:
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Remark 3 (Rejection Sampler) The same reasoning yields a rejection sampler since

p(z|x̄)

p(z|x)
≥ e−‖φ(x)−φ(x̄)‖‖θz‖ ≥ e−2̄+1L. (20)

Here we may bound each term (and the normalization) in computing p(z|x) appropriately.

Remark 4 The efficiency of the sampler increases as the sample size m increases. In particular, an increase of m by O(c4)
is guaranteed to decrease ̄ by 1, thus increasing the acceptance probability π from π to

√
π. This follows from the fact that

each node in the cover tree has at most O(c4) children.

Remark 5 There is no need to build a cover tree to a level beyond ̄ since we do not exploit the improvement. This could be
used to remove the logarithmic dependence O(n log n) in constructing the cover tree and reduce it to O(n̄).

E. Feature Extraction
E.1. Denoising Autoencoder for MNIST

The autoencoder consists of an encoder with fully connected layers of size (28x28)-1000-500-250-30 and a symmetric
decoder. The thirty units in the code layer were linear and all the other units were logistic. The network was trained on the 8
million images using mean square error loss.

E.2. Denoising Autoencoder for CIFAR100

The autoencoder consists of an encoder with convolutional layers of size (3x32x32)-(64, 5, 5)-(32, 5, 5)-(16, 4, 4) and having
a 2x2 max pooling after each convolutional layer. The decoder is symmetric with max pooling replaced by upsampling. The
256 units in the code layer were linear and all the other internal units were RelU while the final layer was sigmoid. The
network was trained on the 50 thousand images using mean square error loss.

E.3. ResNet for ImageNet

We use the state of the art deep convolutional neural network (DCNN), based on the ResNet (”Residual Network”)
architecture (He et al., 2015; 2016). ResNet consists of small building blocks of layers which learn the residual functions
with reference to the input. It is demonstrated that ResNet is able to train networks that are substantially deeper without the
problem of noisy backpropagation gradient. For feature extraction We use a 200 layer ResNet that is trained on a task of
classification on ImageNet. In the process, the network learned which high-level visual features (and combinations of those
features) are important. After training the model, we remove the final classification layer of the network and extract from the
next-to-last layer of the DCNN, as the representation of the input image which is of dimension 2048.
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F. Further Experimental Results

MNIST8m - Direct
Random I Random II KMeans++ CoverTree

Clusters Method s/iter LLH Purity LLH Purity LLH Purity LLH Purity

10

EM 39.588 ± 1.801 3.04 ×107 32.39% 3.05 ×107 30.76% 3.04 ×107 30.81% 3.05 ×107 30.50%
SEM 7.124 ± 0.241 3.04 ×107 32.33% 3.03 ×107 30.65% 3.04 ×107 30.61% 3.04 ×107 31.69%
Canopy I 7.453 ± 0.255 1.49 ×107 42.12% 1.49 ×107 40.51% 1.49 ×107 40.41% 1.50 ×107 42.84%
Canopy II 7.534 ± 0.320 1.49 ×107 42.85% 1.49 ×107 40.69% 1.49 ×107 40.95% 1.50 ×107 42.59%

100

EM 512.185 ± 13.295 3.27 ×107 53.20% 3.26 ×107 53.24% 3.28 ×107 52.45% 3.32 ×107 53.10%
SEM 10.085 ± 0.162 3.34 ×107 53.19% 3.34 ×107 53.21% 3.34 ×107 52.42% 3.33 ×107 53.52%
Canopy I 6.882 ± 0.174 2.02 ×107 53.39% 2.04 ×107 53.53% 2.01 ×107 53.88% 2.02 ×107 52.69%
Canopy II 6.483 ± 0.298 1.91 ×107 60.19% 1.90 ×107 61.09% 1.90 ×107 60.61% 1.90 ×107 60.29%

MNIST8m - Embedding
Random I Random II KMeans++ CoverTree

Clusters Method s/iter LLH (×107) Purity LLH (×107) Purity LLH (×107) Purity LLH (×107) Purity

10

EM 6.595 ± 0.230 -4.35 ×105 58.43% -4.36 ×105 63.14% -4.35 ×105 63.19% -4.34 ×105 63.22%
SEM 0.943 ± 0.037 -4.35 ×105 58.43% -4.35 ×105 62.05% -4.36 ×105 61.44% -4.35 ×105 60.58%
Canopy I 0.932 ± 0.027 -4.35 ×105 58.78% -4.36 ×105 61.61% -4.35 ×105 64.46% -4.35 ×105 58.78%
Canopy II 1.008 ± 0.053 -4.35 ×105 58.78% -4.35 ×105 62.30% -4.36 ×105 61.69% -4.35 ×105 58.78%

100

EM 56.640 ± 1.060 -3.93 ×105 83.95% -3.94 ×105 82.33% -3.94 ×105 83.44% -3.94 ×105 82.77%
SEM 4.006 ± 0.050 -3.93 ×105 83.99% -3.93 ×105 83.37% -3.94 ×105 83.05% -3.95 ×105 83.44%
Canopy I 1.220 ± 0.025 -3.96 ×105 83.44% -3.96 ×105 83.20% -3.97 ×105 83.48% -3.96 ×105 83.22%
Canopy II 1.015 ± 0.029 -3.97 ×105 82.77% -3.97 ×105 83.21% -3.97 ×105 82.66% -3.97 ×105 82.66%

CIFAR100 - Direct
Random I Random II KMeans++ CoverTree

Clusters Method s/iter LLH Purity LLH Purity LLH Purity LLH Purity

100

EM 78.019 ± 10.702 2.86 ×106 14.27% 3.03 ×106 13.31% 3.09 ×106 13.84% 3.09 ×106 14.19%
SEM 1.055 ± 0.095 2.93 ×106 14.08% 2.93 ×106 14.12% 2.86 ×106 14.75% 3.00 ×106 14.90%
Canopy I 1.027 ± 0.095 3.20 ×106 12.98% 3.36 ×106 12.43% 3.21 ×106 13.55% 3.25 ×106 12.91%
Canopy II 1.190 ± 0.099 2.99 ×106 12.87% 3.08 ×106 13.23% 3.28 ×106 13.72% 3.08 ×106 12.87%

500

EM 407.764 ± 18.160 3.37 ×106 25.19% 3.31 ×106 24.70% 3.27 ×106 26.03% 3.31 ×106 25.59%
SEM 6.486 ± 0.613 3.39 ×106 25.14% 3.30 ×106 24.33% 3.36 ×106 26.16% 3.22 ×106 25.39%
Canopy I 2.745 ± 0.225 3.38 ×106 22.35% 3.50 ×106 22.14% 3.45 ×106 24.03% 3.44 ×106 22.31%
Canopy II 1.908 ± 0.152 3.17 ×106 22.68% 3.18 ×106 22.83% 3.19 ×106 24.91% 3.19 ×106 22.71%

CIFAR100 - Embedding
Random I Random II KMeans++ CoverTree

Clusters Method s/iter LLH Purity LLH Purity LLH Purity LLH Purity

100

EM 12.589 ± 0.255 5.45 ×105 12.38% 5.50 ×105 12.14% 5.50 ×105 12.25% 5.46 ×105 12.59%
SEM 0.491 ± 0.022 5.46 ×105 12.21% 5.53 ×105 11.57% 5.45 ×105 12.72% 5.47 ×105 12.68%
Canopy I 0.315 ± 0.014 5.01 ×105 12.34% 5.04 ×105 11.96% 4.99 ×105 13.16% 5.06 ×105 12.30%
Canopy II 0.313 ± 0.124 5.00 ×105 12.50% 5.02 ×105 11.97% 4.99 ×105 13.01% 5.02 ×105 12.29%

500

EM 62.520 ± 1.135 6.94 ×105 19.17% 6.96 ×105 18.93% 6.86 ×105 21.13% 6.86 ×105 21.05%
SEM 2.276 ± 0.112 6.92 ×105 18.97% 6.93 ×105 18.64% 6.85 ×105 21.16% 6.85 ×105 21.20%
Canopy I 0.963 ± 0.061 6.25 ×105 20.07% 6.21 ×105 19.19% 6.14 ×105 21.57% 6.24 ×105 20.04%
Canopy II 0.333 ± 0.101 6.20 ×105 22.26% 6.16 ×105 21.61% 6.12 ×105 23.18% 6.18 ×105 22.25%

Table 1. Comparison of ESCA, Canopy I and Canopy II on cluster purity and loglikelihood on real, benchmark datasets–MNIST8m and
CIFAR-100. Additionally, standard deviations are shown for 5 runs.
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Figure 7. Illustration of concepts captured by clustering images in the feature space extracted by ResNet (He et al., 2015; 2016). Figure
shows four closest images of seven more randomly selected clusters (one in each row) possibly denoting the semantic concepts of ‘electrical
transmission lines’, ‘image with text’, ‘lego toys’, ‘lightening’, ‘Aurora’, ‘buggy’ and ‘eyes’. Few of the concepts are discovered by
clustering as Resnet received supervision only for 1000 categories (for example does not include label ‘lightening’, ‘thunder’, or ‘storm’).
Full set of 1000 imagenet label can be seen at http://image-net.org/challenges/LSVRC/2014/browse-synsets.

http://image-net.org/challenges/LSVRC/2014/browse-synsets
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G. Graphical Explanation
We now present graphical intuitions about our approach.

Motivation

f Latent variable models (LVM), such as Mixture Models, 
Latent Dirichlet Allocation, are popular tools in statistical 
data analysis.

f They are used in diverse fields ranging from text, images, 
to user modelling and content recommendations.

f Inference is often slow
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Inference Strategy

f Inference using Gibbs sampling, stochastic EM, or 
stochastic variational methods requires drawing from

f Assume exponential family, i.e.
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    z 

LocalGlobal

Insights

f For example assume we have following data:

f Two key observations
f Points close by will have similar posteriors
f No need to consider clusters far away

f Two tools to exploit the observations
f Cover trees
f MH sampling
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Cover Tree

f Cover tree is a hierarchical data structure 
f Covering property:
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Cover Tree

f Cover tree is a hierarchical data structure 
f Covering property:
f Separating property:
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Computational Cost of Cover Trees

f Does not depend dimension of the data
f c: Expansion rate of data or Hausdorff dimension

(special case of fractal dimension)

11/37
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Insights

f For example assume we have following data:

f Two key observations
f Points close by will have similar posteriors
f No need to consider clusters far away

f Two tools to exploit the observations
f Cover trees
f Metropolis Hasting sampling
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Metropolis Hasting Sampling
13/37

f Enables us to construct sound sampler that incorporates 
our intuitions 

Accept/
Reject

Sample
from p

Acceptance 
probability

An easy to draw 
distribution

Only need to 
look at a few 
probabilities!

How to Design a Good Proposal?

f For example assume we have following data:
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How to Design a Good Proposal?

f For example assume we have following data:

f Suppose we for each point x we can find surrogates
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How to Design a Good Proposal?

f For example assume we have following data:

f Suppose we for each point x we can find surrogates

f Then           becomes a good proposal for
f Compute alias table and re-use for many points
f Cost for sampling from proposal given alias table is O(1)
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Outline

f Background
f Latent Variable Models
f Cover tree
f Metropolis Hastings

f Canopy: Proposed Method
f Moderate number of clusters
f Large number of clusters

f Experimental Results
f Synthetic data
f Images
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Canopy – Method I

f Build a cover tree on data points – Cost
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Cover Tree:Data:

Canopy – Method I

f Build a cover tree on data points – Cost
f Pick an accuracy level   having              elements
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Cover Tree:
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Canopy – Method I

f Build a cover tree on data points – Cost
f Pick an accuracy level   having              elements
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Cover Tree:
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Canopy – Method I

f Build a cover tree on data points – Cost
f Pick an accuracy level   having              elements
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Cover Tree:
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Data:

Surrogates:

Canopy – Method I

f Build a cover tree on data points – Cost
f Pick an accuracy level   having              elements
f Build alias tables for             – Cost 
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Cover Tree:
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Data:

Surrogates:

Canopy – Method II

f For each observation x perform Metropolis-Hastings
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Data:

Surrogates:

Sample from

Canopy – Method II

f For each observation x perform Metropolis-Hastings
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Data:

Surrogates:

Sample from

Propose in O(1)

Canopy – Method II

f For each observation x perform Metropolis-Hastings
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Data:

Surrogates:

Sample from

Propose in O(1)

Accept/Reject

Canopy – Method II

f For each observation x perform Metropolis-Hastings
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Data:

Surrogates:

Sample from

Propose in O(1)

Accept/Reject

Canopy – Method II

f For each observation x perform Metropolis-Hastings
f For exponential families:
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Data:

Surrogates:

Sample from

Propose in O(1)

Accept/Reject


