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1 Introduction

Dirichlet process [1, 2] forms an important part of Bayesian nonparametrics. In the seminal paper by
Sethuraman, a constructive definition of such priors where given through the stick breaking process
[3, 4]. Although traditional dirichlet process favors models whose complexity grows with the dataset
size as it is a nonparametric prior, yet it only allows the number of clusters (tables) to grow as
α log(N) as N → ∞ almost surely. This imposes restrictions and thus cannot capture behaviours
with larger number of clusters, e.g. the power law behaviour arising in many situations.

To overcome this, many literature in Bayesian nonparametrics focused on models for collections
of distributions based on extensions of the Dirichlet process and other stick-breaking priors. These
extensions are generated by playing around with the generative sequence in the stick-breaking con-
struction [5, 6, 7, 8, 9, 10, 11].

We suggest a generative model for the stick breaking process which should be able to handle arbi-
trary tail behaviours or capture behaviours of varying degree of growth of number of cluster with
data size.

2 Notations and Preliminary Results

Definition 1 Falling factorial

(x)n↑a = x(x+ a) · · · (x+ (n− 1)a) =

n−1∏
i=0

(x+ ia) (1)

In particular recognize that for x = 1 and a = 1, we have (1)n↑1 = n!.

Definition 2 (Unsigned) Stirling Number of first kind s(n, k): They represent the number of permu-
tations of an n-set with precisely k cycles. Next we prove some basic properties of these numbers.
Conventionally we define s(0, 0) = 1, s(n, 0) = 0 and s(n, k) = 0, if n < k.

Lemma 1 Stirling numbers of first kind satisfy the following recurrence relation:

s(n, k) = s(n− 1, k − 1) + (n− 1)s(n− 1, k) (2)

Proof: Consider forming a new permutation with n objects from a permutation of n− 1 objects by
adding a distinguished object. There are exactly two ways in which this can be accomplished.

1. First, we could form a singleton cycle, leaving the extra object fixed. This increases the
number of cycles by 1 and so accounts for the s(n− 1, k − 1) term in the recurrence.

2. Second, we could insert the object into one of the existing cycles. Consider an arbitrary
permutation of n−1 objects with k cycles. To form the new permutation, we insert the new
object before any of the n− 1 objects already present. This explains the (n− 1)s(n− 1, k)
term of the recurrence.
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These two cases include all of the possibilities, so the recurrence relation follows with the given
initial conditions.

Next we have the following relationship:

Lemma 2 Stirling numbers of first kind satisfy the following:

(x)n↑1 =

n∑
k=0

s(n, k)xk (3)

Proof: We proceed by induction on n. For n = 0 and n = 1 we have that:

(x)0↑1 = s(0, 0) = 1 and (x)1↑1 = s(1, 0) + xs(1, 1) = x (4)

Now assume the claim is true for n = l, i.e.:

(x)l↑1 =

l∑
k=0

s(l, k)xk (5)

Then the inductive step for n = l + 1 can be shown as:
(x)l+1↑1 = (x+ l)(x)l↑1

= x(x)l↑1 + l(x)l↑1

= x

l∑
k=0

s(l, k)xk + l

l∑
k=0

s(l, k)xk

=

l+1∑
k=1

s(l, k − 1)xk + l

l∑
k=0

s(l, k)xk

=

l+1∑
k=0

[s(l, k − 1) + ls(l, k)]xk

=

l+1∑
k=0

s(l + 1, k)xk

(6)

Thus by principle of mathematical induction, we complete the proof for (3).

Definition 3 Generalized Stirling number: Generalizing the striling number of first kind, we define
Generalized Stirling number sp,q(n, k) as the coefficients satisfying:

(x)n↑1 =

n∑
k=0

sθ(n, k)(x)k↑θ (7)

Lemma 3 Generalized Stirling number satisfy the following recurrence relation:

sθ(n, k) = sθ(n− 1, k − 1) + (n− 1− kθ)sθ(n− 1, k) (8)

Proof: Starting with the definition of generalized Stirling number (7) as:
(x)n↑1 = (x+ n− 1)(x)n−1↑1

n∑
k=0

sθ(n, k)(x)k↑θ = (x+ n− 1)

n−1∑
k=0

sθ(n− 1, k)(x)k↑θ

n∑
k=0

sθ(n, k)(x)k↑θ =

n−1∑
k=0

sθ(n− 1, k) ((x+ kθ)(x)k↑θ + (n− 1− kθ)(x)k↑θ)

n∑
k=0

sθ(n, k)(x)k↑θ =

n−1∑
k=0

sθ(n− 1, k)(x)k+1↑θ +

n−1∑
k=0

sθ(n− 1, k)(n− 1− kθ)(x)k↑θ

n∑
k=0

sθ(n, k)(x)k↑θ =

n∑
k=1

sθ(n− 1, k − 1)(x)k↑θ +

n−1∑
k=0

sθ(n− 1, k)(n− 1− kθ)(x)k↑θ

(9)
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n∑
k=0

sθ(n, k)(x)k↑θ =

n∑
k=0

(sθ(n− 1, k − 1) + sθ(n− 1, k)(n− 1− kθ)) (x)k↑θ

From which the recurrence relationship follows by comparing coefficients of (x)k↑θ.

3 Review and Motivation

Clustering is a main task of exploratory data mining, and a common technique for statistical data
analysis, used in many fields, including machine learning, pattern recognition, image analysis, in-
formation retrieval, and bioinformatics. Clustering is the task of grouping a set of objects S in such
a way that objects in the same group (called a cluster) are more similar (in some sense or another) to
each other than to those in other groups (clusters). In other words clustering aims to find a partition
Q of the set S respecting the similarity considerations. Formally a partition Q of set S is a disjoint
family of non-empty subsets of S whose union is S. Now in a Bayesian setting for cluster analysis
we would need to introduce prior over Q and cluster parameter and compute posterior over both.
Towards this end, we have to work with random partitions.

A basic method for sequential construction of consistent and exchangeable random partitions is
through Chinese restaurant process. By exchangeablity we mean that for the random partitions
generated relabelling {1, ..., n} does not change the distribution of the partition, and it is consistent
in the sense that the distribution of the partition of n1 obtained by removing the element n from the
random partition at time n is the same as the law of the random partition at time n1. These properties
are crucial to typical clustering applications. (Sometimes these properties are inapplicable, e.g.
exchangibility must be given up for timestamped data and then we can use distance dependent CRP
[12].)

The Chinese restaurant process is a discrete-time stochastic process indexed by positive-integer n
is a partition Qn of the set {1, ..., n} whose probability distribution is determined as follows. Let
{Pk}∞k=0 be an arbitrary sequence of random variables with Pi ≥ 0 and

∑
k Pi ≤ 1. Given the

entire sequence, at time n = 1, the trivial partition {{1}} is obtained with probability 1. Or in terms
of the Chinese restaurant metaphor the first customer be seated at the first table. Then for n ≥ 1,
given the partition Qn, regarded as a placement of the first n customers at tables of the Chinese
restaurant, with Kn occupied tables, at time n+ 1 the customer would be placed at:

• placed at occupied table k with probability Pk

• placed at new table with probability 1−
∑Kn
k=1 Pk

For the tradition Dirichlet Process [1, 2] we have Pk = nk
n+α , where nk is the number of customers

at the k-th table and in case of Pitman-Yor Process we have Pk = nk−θ
n+α .

Now to study the growth of number of tables/clusters with data, we need to look at behaviour Kn. It
is easy to observe from the construction that, the sequence {Kn}∞n=1 forms a Markov chain, starting
at K1 = 1, with increments in {0, 1}, and (possibly inhomogeneous) transition probabilities.

3.1 Dirichlet Process

The transition probabilities are:

P (Kn = k|Kn−1 = k) =
n− 1

α+ n− 1

P (Kn = k|Kn−1 = k − 1) =
α

α+ n− 1

(10)

So we get the recurrence relation:

P (Kn = k) =
α

α+ n− 1
P (Kn−1 = k − 1) +

n− 1

α+ n− 1
P (Kn−1 = k) (11)

One can easily check that following is the solution to the recurrence relation:

P (Kn = k) =
αk

(α)n↑1
s(n, k) (12)
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The expected value of number of cluster/tables goes as:

E[Kn] =

n∑
k=0

kP (Kn = k) =
1

(α)n↑1

n∑
k=0

s(n, k)kαk (13)

Differentiating (3) with respect to x yields:

(x)n↑1

n∑
i=1

1

x+ i− 1
=

n∑
k=0

s(n, k)kxk−1 (14)

which can be used for x = α to give us:

E[Kn] =

n∑
i=1

α

α+ i− 1
(15)

Further for asymptotic behaviour, we can directly see it is α log n, however we can show a stronger
result that:

Kn

α log n

a.s.−→ 1 (16)

by simply defining indicator Bernoulli random variables Wn representing the event of a new table
created and then applying strong law of large numbers.

3.2 Pitman-Yor Process

Assume θ 6= 0. The transition probabilities are:

P (Kn = k|Kn−1 = k) =
n− 1− kθ
α+ n− 1

P (Kn = k|Kn−1 = k − 1) =
α+ kθ

α+ n− 1

(17)

So we get the recurrence relation:

P (Kn = k) =
α+ kθ

α+ n− 1
P (Kn−1 = k − 1) +

n− 1− kθ
α+ n− 1

P (Kn−1 = k) (18)

One can easily check that following is the solution to the recurrence relation:

P (Kn = k) =
(α)k↑θ
(α)n↑1

sθ(n, k) (19)

The expected value of number of cluster/tables goes as:

E[Kn] =

n∑
k=0

kP (Kn = k)

=
1

(α)n↑1

n∑
k=0

k(α)k↑θsθ(n, k)

=
1

θ(α)n↑1

n∑
k=0

(α+ kθ)(α)k↑θsθ(n, k)− α(α)k↑θsθ(n, k)

=
1

θ(α)n↑1

n∑
k=0

(α)k+1↑θsθ(n, k)− α(α)k↑θsθ(n, k)

=
α

θ(α)n↑1

(
n∑
k=0

(α+ θ)k↑θsθ(n, k)−
n∑
k=0

(α)k↑θsθ(n, k)

)
=

α

θ(α)n↑1
((α+ θ)n↑1 − (α)k↑1)

=
α

θ

(
(α+ θ)n↑1

(α)n↑1
− 1

)

(20)

where we used the (7) and again be reminded that θ 6= 0. The asymptotic behaviour can be easily
seen as nθ.
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4 General Stick Breaking

An equivalent way to construct the random partitions is through stick breaking processing, i.e. di-
rectly using the limiting frequencies of partition size counts. The connection between Chinese
Restaurant process and stick breaking process is a simple (and quite beautiful) application of Polya’s
urn theorem.

In the Chinese Restaurant process, consider the table #1 without loss of generality. Assign an in-
dicator variable Wi(1) of belonging to table 1 to every customer i. Then polya’s urn theorem says
that

∑
iW

(1)
i /n

a.s.→ Ui where Ui is a beta distributed random variable. Now looking at table #2,
it is easy to see by the same Polya urn argument that the asymptotic fraction of customers among
those that are not in table #1, is again beta distributed, say U2. Now the overall fraction would be
(1− U1)U2. Arguing by induction as above, one obtains the stick breaking process.

The appeal for stick breaking process lies in the fact that often in practical applications we have
some domain knowledge in these limiting frequencies and we want our models to posses them.
One potential application we are looking forward is the topic modelling of WWW. In WWW we
have on one hand the web graph and on the other hand document associated with each webpage.
Now, for a given “sane” webpage it is expected that topic distribution for the links and content
would be similar. A natural way to enforce similarity in both the topic distribution, is to make share
some latent parameters through the stick breaking process dictating link and content topics. (Stick
breaking process for random graphs have also been studied, e.g. see [?], which is nothing but a
different view to look at random partitions)

Formally, the stick-breaking priors are almost surely discrete random probability measures P that
can be represented generally as:

P(·) =

∞∑
k=1

πkδθk(·) (21)

where δθk denotes a discrete measure concentration at θk. In (21), the πk are random variables
(called random weights) chosen to be independent of θk such that 0 ≤ πk ≤ 1 and

∑
k πk =

1 almost surely. The θk ∼ H are drawn independently and identically from a continuous base
measure. The method of construction for the random weights is what sets stick-breaking priors
apart from general random measures. The general stick breaking construction goes as follows:

1. Draw Vj ∼ Beta(aj , bj)

2. Set πk = Vk
∏
j<k(1− Vj)

where aj , bj > 0. Informally, this construction can be thought of as a stick- breaking procedure,
where at each stage we independently and randomly, break what is left of a stick of unit length and
assign the length of this break to the current πk value. By suitably choosing aj , bj many different
measures have been proposed already:

1. the Ferguson Dirichlet process [1, 2] with aj = 1 and bj = α

2. the Pitman-Yor Process (also known as two-parameter Poisson Dirichlet process) [5] with
aj = 1− θ and bj = α+ jθ

3. the Kernel Stick Breaking Process [6] with a data (position) dependent sequence aj , bj and
πk = VkK(x,Γk)

∏
j<k(1− VjK(x,Γj))

4. the Beta Two-Parameter Processes and finite dimensional Dirichlet priors [7] with finite
sequences ai, bj

We also target to engineer the sequence aj , bj in a novel manner, details of which follows.

However one is not totally free in selecting any sequence aj , bj , because finally the stick breaking
process should be distribution, i.e. the random weights must sum upto 1. Towards this end Ishwaran
gave a necessary and sufficient condition which Vk must satisfy [4]

Lemma 4 For the random weights in the Gaussian-Stick Breaking process,
∞∑
k=1

πk
a.s.
= 1 ⇔

∞∑
k=1

E(log(1− Vk)) = −∞ (22)
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Proof: To establish eq.(22), first consider the following equation where VN = 1 will make the
probability sum up to 1.

1−
N−1∑
k=1

πk = (1− V1) · · · (1− VN−1) (23)

Now, take the limit of eq.(23) as N →∞ and take logs, similar to HW3, to see that:
∞∑
k=1

πk
a.s.
= 1 ⇔

∞∑
k=1

(log(1− Vk))
a.s.
= −∞

The expression on the right-hand side is a sum of independent random variables and, therefore, by

the Kolmogorov three series theorem, equals −∞ almost surely iff
∞∑
k=1

E(log(1 − Vk)) = −∞.

Alternatively, by (23),

∞∏
N=1

E

(
∞∑

k=N+1

pk

)

E
( ∞∑
k=1

pk

) =

∞∏
N=1

E(1− VN ) =

∞∏
N=1

bN
aN + bN

.

If
∞∑
N=1

log(1 + aN/bN ) = +∞, then the right-hand side equals zero and we must have that

E
( ∞∑
k=1

pk

)
→ 1. However, because

N∑
k=1

pk is positive and increasing, it follows that
∞∑
k=1

pk
a.s.
= 1.

The above lemma trivially holds for traditional Dirichlet Process. In case of Pitman-Yor Process, we

verify by directly showing
∞∑
N=1

log(1 + aN/bN ) = +∞ using log(1 + x) ≥ x− x2/2and then rest

follows as in the proof of lemma 4.
∞∑
N=1

log

(
1 +

aN
bN

)
=

∞∑
N=1

log

(
1 +

1− θ
α+Nθ

)

≥
∞∑
N=1

1− θ
α+Nθ︸ ︷︷ ︸
−→∞

−
∞∑
N=1

(
1− θ
α+Nθ

)2

︸ ︷︷ ︸
something finite

(24)

For the Kernel Stick Breaking Process, by design we have log(1− VkK(x,Γk)) < 0, so the expec-
tation is strictly negative and this condition is satisfied.

5 Gaussian-Stick Breaking (GSB) model

In this section, we introduce the Gaussian-Stick Breaking (GSB) process. The main idea behind
Gaussian-Stick is that we use hyperparameters to generate parameters of beta distributions while
general sticks fix the parameters to constant or to some sequence aj , bj , i.e. Beta(aj , bj). To exploit
well established properties of exponential family in designing applications, we have chosen gaussian
random variable ξi and exponential function to generate the parameter αi which we will use in
generating the sticks. We formally define the GSB as:

• θ ∼ Gaussian-Stick(ρ, µ = 0, σ2 = 1)

1. ξi ∼ N (µ, σ2)
2. αi = ρie

ξi

3. βi ∼ Beta(1, αi)
4. θk = βk

∏
j<k(1− βj)

With the provided definition, in the next section, we will examine the properties of the tail properties
of the GSB and also prove that GSB is a valid process by showing the sticks θk sums up to 1 as
sequence goes to infinity.
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6 Properties of Gaussian-Stick Breaking Process

The lack of control in the distribution was the biggest motivation in constructing new stick breaking
process. Therefore in this section, we first examine the tail behaviours of GSB: behaviour of mo-
ments and required design constraints in order to have finite moments. And to show that distribution
generated from GSB is a valid probability function, we prove that the sticks θk sums up to 1.

6.1 Tail Properties

Starting from the first moment, here we will generalize the expression for the kth moment.

• 1st order: E
[∑

ρie
ξi
]

=
∑
i

ρi
∫
eξie−

ξ2i
2 dξi =

∑
i

ρie
1
2

• 2nd order: E

[(∑
i

ρie
ξi

)2
]

= e||ρ||21 + (e2 − e)||ρ||22

...

• kth order: E

[(∑
i

ρie
ξi

)2
]

becomes a combination of ||ρ||k1 , ||ρ||k2 , . . . , ||ρ||kk||.

Analyzing the resutls, we can conclude the kth order moment is a combination of
||ρ||k1 , ||ρ||k2 , . . . , ||ρ||kk||. Since ||ρ||1 ≥ ||ρ||k for any k ≥ 1, the only constraint we need for
the existence of the moments are ||ρ||1 < ∞. Therefore we conclude that given ||ρ||1 < ∞, the
moments exist and we can control the moments by controlloing ρis.

6.2 Proof on the validity of Gaussian-Stick Brekaing

We prove that
∞∑
k=1

θk
a.s.
= 1 by proving that

∞∑
k=1

E [log(1− βk)]
a.s.
= −∞ using the Lemma 4 we

mentioned in the previous section [4].

To show the right hand side of eq.(22), we first obtain an expression for E [log(1− βk)].

6.2.1 Evaluation of E [log(1− βk)]

E [log(1− βk)] = E [log(γk)] where γk ∼ Beta(αk, 1)

=
1

C

∫ 1

0

log γk γ
αk−1
k dγk where C is normalizer for Beta(αk, 1)

=
1

Cαk

[
[log γk γ

αk
k ]

1
0
−
∫ 1

0

1

γk
γαkk dγk

]
= − 1

αk

With the above derivation of E [log(1− βk)] = − 1
αk

gives us result that
∞∑
k=1

E [log(1− βk)] =

−
∞∑
k=1

1
αk

. Therefore to show that
∞∑
k=1

E [log(1− βk)]
a.s.
= −∞, we will show that

∞∑
k=1

1
αk

a.s.
= ∞.

Lemma 5 For series ρk ≥ 0 such that ||ρ||1 <∞, liml→∞
l∑

k=1

1
ρk

=∞.
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Proof: We will prove the result using 2nd Borel-Canteli Lemma, which states that
∞∑
j=1

P (Vj > ε) =

∞ −→ P (Vj > ε infinitely often) = 1. Using this fact, we will prove the following:

∞∑
j=1

P

(
1

αj
> ε

)
=∞⇒ P

(
1

αj
> ε infinitely often

)
= 1⇒ P

 ∞∑
j=1

1

αj
=∞

 = 1 almost surely

Now, inspecting P ( 1
αk

> ε) for 0 < ε < 1 will let us know the sufficient condition for 2nd Borel-
Canteli Lemma holds.

P

(
1

αj
> ε

)
= P

(
1

ρj
eξj > ε

)
= (ξj < − log (ρjε))

Looking at the last term of the above equation, as ρj → 0, P (ξj < − log (ρjε)) → 1 and therefore
∞∑
j=1

P ( 1
αj
> ε) =∞, the sufficient condition for 2nd Borel-Canteli lemma, holds.

7 Conclusion and Future Work

We study the growth of cluster size and corresponding stick-breaking process for Chinese Restaurant
type processes with the aim to eventually design stick-breaking process which can handle arbitrary
cluster size growth. To achieve this we have come up with a novel stick breaking process and proved
its validity. Future work remains to find exact design methodology for the sequence ρ to achieve
desired cluster growth.
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Appendix: Contribution of Work

7.1 Jay Yoon Lee

• Development of Gaussian Stick Breaking
• GSB formulation
• GSB Properties
• Lemma 4 proof

7.2 Manzil Zaheer

• Development of Gaussian Stick Breaking
• Introduction, Notations & Conclusion
• DP/Pitman-Yor/CRP
• Traditional Stick-Breaking
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