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1. Introduction
Gaussian graphical models (GGMs) are commonly used
to represent relationships between objects in complex sys-
tems. They can be thought as a class of undirected graph-
ical models in which a set of random variables follow a
multivariate Gaussian distribution where nodes correspond
to random variables in the set while edges describe the con-
ditional independence relationships among them. An edge
between two nodes is absent if and only if the two random
variables that are represented by those nodes are indepen-
dent conditional on all other variables. Provided the nor-
mality assumption, when two random variables are inde-
pendent conditional on all other variables the correspond-
ing entry in the precision matrix would be zero. Given
some observations of the set of random variables we then
can infer conditional independence relationships between
various random variables in the set by just identifying ze-
ros in the precision matrix.

Complex systems where uncovering such relationships
among variables is of particular interest are modern finan-
cial markets where firms have become increasingly linked
to each other through a complex and usually opaque net-
work of relationships.1 From a economic point of view,
if investors take into account these relationships, prices of
both linked firms should adjust when news about one of the
linked firms is released into the market (as long as those
news represent a change in the fundamental value of one
of the linked firms). To understand prices behavior then it
may be important to uncover and understand the nature of
such (possibly time-varying) relationships.

1For instance, a firm may find itself in the roles of customer,
supplier, partner or competitor all with the same firm at the same
time but in different markets. However, many of these relation-
ships may not be so concrete. For example, two firms may be
temporarily related by their exposure to the same portfolio of as-
sets or by something more subtle such as social connections be-
tween their top executives.

2. Background and Related Work
2.1. Background

Since firms’ relationships may be important to understand
prices behavior obtaining a better representation of the
underlying business network is of key importance. Two
of the main problems in determining such business net-
work is that information about firms connections is typi-
cally opaque and that those relationships tend to be com-
plex. The goal of this project is to uncover the time-varying
structure that characterize the U.S. business network in an
economic and meaningful manner. To do so, we use GGMs
to represent the U.S. business network. Using financial data
such as market prices and returns we aim to uncover the
time-varying pattern of zeros on the precision matrix of a
GGM. In particular, we develop a novel method for learn-
ing the fixed structure of a graphical model where we allow
the parameters of the model to change (similar to (Kolar
et al., 2010)). Then, we plan to use the inferred network
and compare it with the network we get from customer-
supplier data in which two firms are connected in a given
year as long as one of them represents more than 10% of
the total sales of the other company for that year.

2.2. Related work

For sake of exposition we divide this section into two sub-
sections. In the first subsection we review some of the
main methods used for estimating the network structure
in GGMs. In the second subsection we present some re-
cent research in finance that tries to uncover the relation
between business connections and asset prices.

2.2.1. ESTIMATING THE NETWORK STRUCTURE IN
GGMS

As we previously mentioned the inverse covariance ma-
trix, known as precision matrix, is useful for identifying
relationships between complex objects. (Meinshausen &
Bühlmann, 2006) describes an alternative to standard co-
variance selection for sparse high-dimensional graphs –
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neighborhood selection with a Lasso– and shows how it is
a computationally more attractive alternative. The method
optimizes a convex function, applied consecutively to each
node in the graph. The choice of the penalty function is cru-
cial to the convergence of the algorithm, especially in high
dimensions. The neighborhood is defined by the nonzero
coefficient estimates of the l1-penalized regression

n̂e
λ
a = {b ∈ τ(n) : θ̂a,λb 6= 0} (1)

where λ is the penalty parameter. A useful choice for λ is
suggested as the prediction-oracle value:

λoracle = arg min
λ

E(Xa −
∑
k∈τ

θ̂a,λk Xk)2 (2)

This minimizes the predictive risk among all Lasso esti-
mates. An estimate for λoracle is obtained by the cross-
validated choice λcv. This approach is consistent under
the following assumptions: availability of independent ob-
servations from the model, high dimensionality, non singu-
larity, sparsity, bounds on magnitude of partial correlations
and neighborhood stability.

(Yuan & Lin, 2007) uses penalized likelihood methods for
estimating the concentration matrix in GGMs. The matrix,
thus estimated is positive definite, which leads to simulta-
neous model selection and estimation. A BIC-type crite-
rion is used for selecting the tuning parameter in this case.
A Lasso penalty is employed on the off-diagonal elements
of the concentration matrix as well.

(Kolar et al., 2010) describes two different techniques for
estimating time-varying networks, which build on Lasso
regularized logistic regression which is formalized as a
convex optimization problem and solved using generic
solvers. The key point of this paper is to reverse engi-
neer networks that are latent, and topologically evolving
over time, over a series of nodal attributes. An important
assumption taken throughout the paper is of independent
observations at different points of time. Tuning parame-
ters selection remains a problem, and so is nonparametric
estimation of change points.

(Wahlberg et al., 2012) presents an alternating augmented
Lagrangian method for convex optimization problems
where the sum consists of two terms : the first term is sepa-
rable in variable blocks, and the second term is separable in
differences between consecutive variable blocks. ADMM
is applied to l1 mean filtering and l1 variance filtering. This
method is around 10, 000 times faster compared to generic
optimization solvers SDPT3.

(Friedman et al., 2008) applies lasso penalty to the inverse
covariance matrix using a coordinate descent procedure.
(Friedman et al., 2008) also provides a conceptual link be-
tween the exact problem and approximation suggested by
(Meinshausen & Bühlmann, 2006).

2.2.2. ASSET PRICING AND BUSINESS NETWORKS

One of the main areas in financial economics is asset pric-
ing. Asset pricing theory basically studies the value of as-
sets with a stream of uncertain payoffs. Since low prices
imply high rates of returns one can think of asset pricing
theories as explanations of why some assets have higher
returns than others. Provided that higher returns are com-
pensation for holding higher risk, understanding why some
assets are riskier than others is of key importance in asset
pricing.

One of the main notions in asset pricing is aggregate risk,
which is the risk that cannot be eliminated through a diver-
sified portfolio. By holding a diversified portfolio investors
losses in one particular asset are compensated with gains in
other assets within the same portfolio. Thus, the exposure
of an asset to aggregate risk determines how risky the asset
is, and thus its expected return since in principle all other
risks can be eliminated through diversification.

Then understanding the sources of aggregate risk is of key
importance. In a recent theory, (Acemoglu et al., 2012)
posses the idea that shocks affecting particular companies
(or industry sectors) may be at the core of the origin of
aggregate shocks, provided that some of those companies
may be well connected with many others in the economy.
Therefore, shocks affecting a well connected company, say
company A, may not be eliminated through diversification
since those shocks not only affect company A but also the
companies connected to company A. Therefore, shocks
originated at the micro level may spread out and become
aggregate shocks.

Following the above idea (Buraschi & Porchia, 2012) and
(Ahern, 2013) explore whether the importance of an indus-
try sector determines the returns of the companies within
that sector. Both studies implicitly model the aggregate
economy as a network of related industries and proxy the
importance of a sector with centrality measures from graph
theory. The main finding in both papers is that industries
that are more central in the network of intersectoral trade
earn higher stock returns than industries that are less central
since stocks in more central industries have greater market
risk because they have greater exposure to sectoral shocks
that transmit from one industry to another through inter-
sectoral trade. Their empirical evidence then suggests that
sectoral shocks that contribute to aggregate risk are more
likely to pass through central industries than peripheral in-
dustries.

Using customer supplier data, (Cohen & Frazzini, 2008)
and (Wu & J.R.Birge, 2014) provide evidence that not only
intersectoral linkages matter but also economic linkages
between particular companies matter, such as customer-
supplier connections. For instance, (Cohen & Frazzini,
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2008) provide evidence that well connected firms tend to
earn higher returns than less connected ones. On the other
hand, (Wu & J.R.Birge, 2014) provides evidence that man-
ufacturing firms that are more central in the network earn
lower returns, while logistics firms that are more central in
the network earn higher returns. They argue that central-
ity and multiplicity of suppliers have different risk implica-
tions for firms operating in different industries. Their idea
is that more central firms in manufacturing choose their
suppliers to operationally hedge shocks transmitted from
other firms and earn lower returns due to lower aggregate
risk. On the contrary, more central firms in logistics are
shock aggregators, earning higher returns due to their ex-
posure to greater aggregate risk.

3. Problem Abstraction and Methodology
The problem described above can be abstracted away and
formulate as follows. Let {xi, zi}i∈[n] be an independent
sample from a joint probability distribution (X,Z) over
Rp × [0, 1].2 We assume that the conditional distribution
of X given Z = z is given as

X | Z = z ∼ N (µ(z),Σ(z)). (3)

Let p(z) be the density function of Z. We assume that the
density is well behaved as specified later, however, we do
not pose any specific distributional assumptions. Further-
more, we do not specify parametric relationships for the
conditional mean or variance as functions of Z = z.

Our goal is to learn the conditional independence relation-
ships among components of vector X given Z = z. Let
Ω(z) = Σ(z)−1 = (ωab(z))a,b∈[p]×[p] be the inverse con-
ditional covariance matrix. The pattern of non-zero ele-
ments of this matrix encodes the conditional independen-
cies between the components of the vector X . In particular

Xa ⊥ Xb | X−ab, Z = z ⇔ ωab(z) = 0 (4)

where X−ab = (Xc | c ∈ [p]\{a, b}). Denote the set of
conditional independencies given Z = z as

S(z) = {(a, b) | ωab(z) 6= 0}. (5)

Using S(z), we define the set

S = ∪z∈[0,1]S(z)

= {(a, b) | ωab(z) 6= 0 for some z ∈ [0, 1]}.
(6)

Let S̄ be the complement of S, which denotes pairs of com-
ponents of X that are conditionally independent irrespec-
tive of the value of Z.

Our goal is to estimate S, for which it suffices to find
Ω(·). Suppose that our data set consists of n time instances

2We use [n] to denote the set {1, . . . , n}.

{z1, · · · , zn}. At each zi, we observe ni instances of data
vector xij . Motivated by the graphical lasso procedure of
(Friedman et al., 2008), we propose the following optimiza-
tion problem for learning the structure of a graphical model
which allows the parameters of the model to change:

min
Ω(·)∈F

∑
i∈[n]

(tr(CiΩ(zi))− log |Ω(zi)|+ µ‖Ω(zi)‖1)

+λpen
(
{Ω(zi)}i∈[n]

)
with F = {Ω(·) | ∀i,Ω(zi) � 0}

(7)
where Ci =

∑ni
j=1

(xijx
′
ij)

ni
and pen

(
{Ω(zi)}i∈[n]

)
is a

penalty function that controls the complexity of the fitted
model. Also the penalty function should encourage the pre-
cision matrix to be smooth functions of time.

3.1. Setting the Problem

We select the penalty function as pen
(
{Ω(zi)}i∈[n]

)
=∑

‖Ω(zi+1) − Ω(zi)‖F . The reason for selecting this
penalty will become clearer as we rewrite the optimization
problem as:

min
Ω(·)∈F

{
n∑
i=1

(tr(CiΩ(zi))− log |Ω(zi)|+ µ‖Ω(zi)‖1)

+λ

n−1∑
i=1

√∑
a,b

(ωab(zi+1)− ωab(zi))2


with F = {Ω(·) | ∀i,Ω(zi) � 0}

(8)
One can immediately observe that this choice of
penalty function would encourage successive values of
ωab(zi)ωab(zi+1) to be similar. At the same time, L2 na-
ture would ensure smoothness. Thus we can say that the
penalty function has been carefully designed so as perform
model selection and control the smoothness of the estima-
tor, i.e. we basically impose that precision matrices need
to be smooth functions of time. We believe however that
our choice of penalty function keeps the problem tractable
without losing recovery power.

An alternative approach to the problem would be to extend
the approach of (Boyd et al., 2011). Again, one would de-
velop an appropriate penalty that would fix the graph struc-
ture, but allow for change in the parameters.

Coming back to our choice of penalty function, to handle
large databases we need to make the optimization prob-
lem scalable. First step towards parallelizing would be to
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rewrite the optimization problem as:

min
Ω(·)∈F,R(·)

{
n∑
i=1

(tr(CiΩ(zi))− log |Ω(zi)|+ µ‖Ω(zi)‖1)

+λ

n−1∑
i=1

‖Ri‖F

}
s.t. R(zi) = Ω(zi+1)− Ω(zi)

with F = {Ω(·) | ∀i,Ω(zi) � 0}
(9)

Then introducing the constraint set C = {(Ω(·), R(·)) :
R(zi) = Ω(zi+1) − Ω(zi),∀i} and associated indicator
function IC(·,·), we get the function in standard form to ap-
ply ADMM as:

min
Ω(·)∈F,R(·),W (·),S(·)

{
n∑
i=1

(tr(CiΩ(zi))− log |Ω(zi)|+ µ‖Ω(zi)‖1)

+λ

n−1∑
i=1

‖Ri‖F + IC(W,S)

}
s.t. Ω(zi) = W (zi)

R(zi) = S(zi)

with F = {Ω(·) | ∀i,Ω(zi) � 0}
(10)

We explore in the next section our proposed implementa-
tion of the above problem using ADMM, a distributed op-
timization problem solving strategy.

3.2. ADMM steps

We derive an ADMM method to solve the problem de-
scribed above. For simplicity define Ω(zi) = Ωi and
Ri = Ωi − Ωi−1. For the optimization problem in (10),
we can write the augmented Lagrangian for this problem
as:

Lρ(Ω, R,W, S, U, T )

=

n∑
i=1

(tr(CiΩ(zi))− log |Ω(zi)|+ µ‖Ω(zi)‖1)

+ λ

n−1∑
i=1

‖Ri‖F + IC(W,S)

ρ

2
‖Ω−W + U‖2F +

ρ

2
‖R− S + T‖2F

(11)
where U, T are scaled dual variables associated with the
constraints Ωi = Wi and Ri = Ti respectively. Now we
highlight only the flow and main steps involved. In each it-
eration k of ADMM, we perform the following three steps.

• Step 1: Since the objective function is separable in Ωi
andRi, the first step of the ADMM algorithm consists
of 2n− 1 separate minimizations.

(a) The first n minimizations correspond to

Ωk+1
i := arg min

Ωi�0
{tr(CiΩi)− log |Ωi|

+
ρ

2
‖Ωi −W k

i + Uki ‖22
}

with i ∈ [n] which can be solved analytically, as
follows:

(a.1) Compute the eigenvalue decomposition of

ρ(W k
i − Uki )− Ci = QΛQ′

where Λ = diag(λ1, λ2, · · · , λp)
(a.2) Let

µj :=
λj +

√
λ2
j + 4ρ

2ρ
, with j ∈ [p]

(a.3) Finally, set

Ωk+1
i = Q diag(µ1, · · · , µp) Q′

(b) The last n− 1 minimizations correspond to

Rk+1
i := arg min

Ri

{λ‖Ri‖F + · · ·

+
ρ

2
‖Ri − Ski + T ki ‖22

}
with i ∈ [n− 1] which simplifies to

Rk+1
i = Sλ

ρ

(
Ski − T ki

)
where

Sλ
ρ

(
Ski − T ki

)
=

(
1− λ

ρ

1

‖(Ski − T ki )‖F

)
(Ski −T ki )

and Sλ
ρ

(0) = 0.

• Step 2: In the second step we project (Ωk+1 +
Uk, Rk+1 + T k) onto the constraint set C, i.e.

(W k+1, Sk+1) := ΠC(Ω
k+1 + Uk, Rk+1 + T k)

(a) LetQk+1 = Ωk+1 +Uk and Vk+1 = Rk+1 +T k

(b) The projection can then be performed by solving
the following minimization problem:

minimize ‖W k+1 −Qk+1‖F
2

+ ‖Sk+1 − V k+1‖2F
subject to S = DW,

where D is forward difference operator withD ∈
R(n−1)p×np and again just to be clear W =
{W1; · · · ;Wn}, S = {S1; · · · ;Sn−1}.
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(c) We solve the optimality condition:

(I +D′D)W = Q+D′V

for W and then using S = DW , obtain S
as well. We obtain E = (I + D′D). Note
that E will be fixed for a given set of data
and hence, can be precomputed and saved in
memory for use in projection function. Also, let
B = Q + D′V . Finally, steps for projection can
be summarized as:

(c.1) We get B as:

B = Q+D′V

=⇒ B1 = Q1 − V1,

Bn = Qn + Vn−1,

Bi = Qi + (Vi−1 − Vi), i ∈ [n− 1]

(c.2) W can be obtained as described above. How-
ever, we need to take sparsity constraint into
account as well. We do that by using a soft
threshold of µ

ρ on w, based on the proposi-
tion 1 of (Friedman et al., 2007). The result
basically implies that, we should first obtain
a solution assuming mu = 0 and then obtain
the solution for µ 6= 0 by simple threshold-
ing on the previous result. Hence we get W
in two steps as:

(c.2.1)
(I +D′D)W = Q+D′V︸ ︷︷ ︸

=B

or EW = B

or W = E−1B

Notice that E is a very well conditioned
matrix, so inverting it is not an issue. Nev-
erthless we can solve the linear system by
Cholesky factorization technique and in-
fact its factors are available in closed form,
e.g. see (Wahlberg et al., 2012).

(c.2.2)
W = Sµ

ρ
(W )

where S is the element-wise soft thresholding
operator.

(c.3) Finally, we get S as:

S = DW

=⇒ Si = Wi+1 −Wi, i ∈ [n− 1]

• Step 3: Finally, we update the dual variables:

Uk+1
i := Uki + (Ωk+1

i −W k+1
i ), i ∈ [n]

and

T k+1
i := T ki + (Rk+1

i − Sk+1
i ), i ∈ [n− 1]

3.2.1. STOPPING CRITERIA

Let ekp = [Ωk − W k;Rk − Sk] and ekd = −ρ[W k −
W k−1;Sk−Sk−1] be the primal and dual residuals at itera-
tion k. We stop the algorithm when both the primal and the
dual residuals satisfy ‖ekp‖F ≤ εpri, ‖ekd‖F ≤ εdual where
εpri > 0 and εdual > 0 are the tolerance of the primal and
dual problems respectively. These tolerances can be set via
an absolute plus relative criterion,

εpri = p
√

2n− 1εabs + εrel max{‖Ωk‖F + ‖Rk‖F , ‖W k‖F + ‖Sk‖F },
εdual =

√
nεabs + εrelρ(‖Uk‖F + ‖T k‖F )

where εabs and εrel are absolute and relative tolerances (see
(Boyd et al., 2011) for more details).

4. Experiments
Using monthly returns from 1980 to 2004 of about 6,636
U.S. firms we uncover the conditional independence rela-
tionships among them. We select those companies since
they appear in a database we have access to with in-
formation about customer-supplier relationships. To as-
sess whether the inferred time series of conditional in-
dependence graphs resemble the time series of graphs
we get from the customer-supplier database, we use pre-
cision/recall as well as spectral methods for comparing
graphs, e.g. cospectrality of graph laplacians.

For illustrative purposes we first describe the customer-
supplier database and some of the characteristics of the
monthly return data. We then explain how we select the
tuning parameters µ (sparsity) and λ (smoothness) and the
main features of our results.

4.1. Description of the data: customer-supplier and
return data

Under regulation SFAS No. 131 firms are required to dis-
close financial information for any industry segment that
comprised more than 10% of consolidated yearly sales, as-
sets, or profits, and the identity of any customer represent-
ing more than 10% of the total reported sales. The sample
consists of all firms listed in the CRSP/Compustat database
with nonmissing values of book equity (BE) and market
equity (ME) at the fiscal year-end for which one can iden-
tify the customer as another traded CRSP/Compustat firm.
Since prior to 1998, most firms customers were listed as
an abbreviation of the customer name we use the customer
identity identified by (Cohen & Frazzini, 2008). The final
sample includes about 27,000 distinct firm-year relation-
ships, representing a total of about 7,000 unique supplier-
customer relationships between 1980 and 2004. Each ob-
servation in our dataset indicates both the name of the cus-
tomer and its supplier, the year in which both companies
were linked and the strength of the link (which is repre-
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sented by the fraction of sales a given customer represents
for a particular supplier).

Since we use monthly returns to uncover time-varying re-
lationships between firms we further clean the customer-
supplier database to consider only those firms for which
we have nonmissing observations in returns from 1990 to
2000. We obtain that information from Compustat as well.
This procedure selects only about 1140 firms for which we
compare the output of both graphs.

4.2. Implementation

We implemented the problem as a MapReduce program in
Hadoop and ran it across 8 workers. In a single job execu-
tion, we used two set of mappers to operate on the two min-
imization equations, with each individual mapper operating
on a single instance of data. Thus, there were a total of n
mapper instances to operate on the first set of minimiza-
tion equations and (n-1) mapper instances to operate on the
second set of minimization equations. The two set of map-
pers were then combined in a single reducer instance which
carried the projection operation as well as updated the dual
variables. The reducer writes output to two separate output
files in the same format as that of input files. The output
files are then reused as input for the next job execution. We
keep executing new jobs with updated input files until the
convergence condition is met.

We can see that the first set of minimization equations are
computationally very expensive since each involves com-
puting eigen value decomposition of the combination of the
matrices W,U and C. This is precisely where the power of
Hadoop is realized as the eigen value decompositions for
each instance i is carried by a separate mapper in parallel.
We can also see that the projection function is not a com-
putationally intensive task and thus, the results from both
mapper sets can be combined in a single reducer instance
without losing on execution time. Figure 1 gives an archi-
tectural overview of our algorithm.

Following are the implementation details of a single
MapReduce job:

1. Input Files : We used two input files : one containing
W,U,C,Ω matrix values and the other containing R,S,T
matrix values.

2. File Splits : The 1st input file was split into blocks of
size 4n and distributed amongst the first set of map-
pers and the 2nd input file was split into blocks of size
3n and distributed amongst a second set of mappers.
Note that file 1 contained n instances, while file 2 con-
tained (n-1) instances. This ensured that each mapper
handled just one instance of the data. We also used a
custom record reader to change the output value. Fol-

lowing are the (key,value) mappings:

(a) (path, file)→ (i, [Wi, Ui, Ci])

(b) (path, file)→ (i, [Ri, Si, Ti])

3. Mappers : Corresponding to the 2 input files, we
used 2 mappers that carried the mapping as:

(a) (i, [Wi, Ui, Ci])→ (0, [Ui, Ci,Ωi])
(b) (i, [Ri, Si, Ti])→ (0, [Ri, Ti])

The first mapper carried the first n minimizations
while the second mapper carried the last n-1 mini-
mizations as given in the above ADMM steps. Also,
note that we used the same key 0 for both set of
mapper instances so that all the (2n-1) minimization
results can be collected in a single reducer instance.

4. Reducer : The output of both mappers was received
by a single reducer instance that carried the projec-
tion operation on them and produced the following
(key,value) mappings while writing the output to two
different files:

(a) ∀j ∈ [n], (0, [Uj , Cj ,Ωj ]) + (0, [Rj , Tj ])→
∀i ∈ [n], (i, [Wi, Ui, Ci,Ωi])

(b) ∀j ∈ [n], (0, [Uj , Cj ,Ωj ]) + (0, [Rj , Tj ])→
∀i ∈ [n], (i, [Ri, Si, Ti])

5. Reuse of Output Files : We purposely created the
output files in the same format as that of input files so
that we can reuse them across all jobs.

4.3. Selection of tuning parameters

To select the tuning parameters µ and λ in (8) we perform
grid search among pairs (µ, λ) ∈ [0.1, 1]× [0.1, 1] and se-
lect the pair (µ∗, λ∗) which attains either the highest recall
or the highest precision. To define recall and precision we
use information from the customer-supplier database. We
then use edges that appear in graphs from the customer-
supplier database as the edges we would like to retrieved
from our implementation. In particular, for each pair (µ, λ)
we compute the recall and precision from 1990 to 2000 as
follows:

|recall| =
|Edges identified| ∩ |True Edges|

|True Edges|

|precision| =
|Edges identified| ∩ |True Edges|

|Edges identified|

4.4. Results

First of all we test our approach and implementation on a
synthetic data set. We generate an artificial normally dis-
tributed data for p = 10, n = 4, ni = 3. Next we run the
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(i, [Wi,Ui,Ci])   

(0, [Ui,Ci,Ωi]) 

(i, [Ri,Si,Ti])   

(0, [Ri,Ti])

(0, [U,C,Ω]) + (0, [R,T]) 

  (Ø, [i,Wi,Ui,Ci,Ωi])

(0, [U,C,Ω]) + (0, [R,T]) 

  (Ø, [i,Ri,Si,Ti])

(path, file)    

(i, [Ri,Si,Ti])

(path, file)    

(i, [Wi,Ui,Ci])

i = {1 , ., n} 

i = {1, ., n} 

i = {1, ., n} 

i = {1, ., n} 

Input 

File 1

Input 

File 2

Output 

File 2

Output 

File 1

Reducer

Figure 1. Architectural overview of our MapReduce implementation

proposed method on this synthetic dataset and plot the pre-
cision and recall for the grid (µ, λ) ∈ [0.1, 1] × [0.1, 1] in
Figures (2) and (3) respectively. As we achieve precision
around 0.5 for p > n case, we can say that the proposed
method performed fairly well.
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Figure 2. Precision using
synthetic data as function of
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Figure 3. Recall using syn-
thetic data as function of λ
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Now moving onto real financial data, Figures (4) and
(5) show the precision and recall as functions of tuning
parameters λ (smoothness) and µ (sparsity) respectively.
Notwithstanding both figures exhibit a nonmonotonic be-
havior with respect to λ the overall level of recall and pre-
cision in both figures is small. Thus, using only monthly re-
turn data does not help uncovering customer-supplier link-
ages among the firms in our database.

However, our implementation seems to uncover clusters of
firms that represent different industries. A similar result
was obtained by (Lafferty et al., 2012), while trying to infer
graphical models from returns data. Therefore, even when

customer-supplier relationships may not be identified from
using return data other economical relationships seem to be
identified. Since shocks may affect firms within the same
industry similarly, returns of firms in the same industry tend
to co-move.
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Figure 4. Precision using
monthly returns data as func-
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To tackle the identification problem of customer-supplier
linkages we further explore the nature of the difference
among returns of different companies. In empirical as-
set pricing the cross section of expected returns is typi-
cally characterized using the Fama and French factors (see
(Fama & French)). In particular, (Fama & French) pose the
idea that the expected excess return of a given company j
at period t, namely E[rjt − rft], follows

E[rjt − rft] = α+ βm(rmt − rft) + · · ·
+βsSMBt + βhHMLt (12)

where rft represents the risk free rate at period t, rmt the
return of the market portfolio at period t, SMBt the histori-
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cal excess return of a portfolio that buy small cap firms and
sell big cap firms and HMLt the historical return of a port-
folio that buys high book to market ratio firms and sell low
book to market ratio firms.

Hoping to improve our previous results and to incorporate
the above findings we run (12) for each firm. We compute
the residuals of such regressions per each month. We then
try to uncover customer-supplier relationships from the in-
formation that is not spanned by the three Fama and French
factors. Figures (6) and (7) show the precision and recall
as functions of tuning parameters λ and µ respectively once
we use residual of the Fama and French regressions instead
of monthly returns.
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Figure 6. Precision using
residuals from Fama and
French regressions as func-
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(from left to right)
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Figure 7. Recall using resid-
uals from Fama and French
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Even when precision and recall may not be monotonic
functions of λ –as we see in the above figures– the over-
all precision and recall does not improve if we use resid-
uals rather than returns. In fact, once we correct for the
existence of the three Fama and French factors it becomes
hard to understand the nature of the inferred relationships
among firms.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

1000

2000

3000

4000

5000

µ

Spectral Distance between combined graphs for years 1990−2000 (returns data)

λ

Figure 8. Spectral distance
using monthly returns data
as function of λ and µ
respectively (from left to
right)

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

1000

2000

3000

4000

5000

µ

Spectral Distance between combined graphs for years 1990−2000 (residual data)

λ

Figure 9. Spectral distance
using residuals from Fama
and French regressions
as function of λ and µ
respectively (from left to
right)

Even if the proposed method could not recover the desired
consumer supplier relationships, we next try to determine
if the structure of true consumer-supplier graph and recov-
ered graph are similar or not. For this purpose, we resort to
spectral methods. In figures (8) and (9) we show the spec-
tral distance between the customer-supplier graphs and the
ones we obtain with our method, which also indicates that

Figure 10. Conditional independence graph from returns data in
1991. Each node represents a firm. An edge between two compa-
nies exists as long as both companies are conditionally dependent
provided the existence of all other companies in the economy.
Colors represent firms’ industries which are determined by SIC
codes.

no such structural similarity could be found for any value
of the tuning parameters.

To give a glimpse of the structure of the business network
we recover with our method figures 10 and 11 show the
conditional independence graph and the customer-supplier
network in 2000. For computing the conditional indepen-
dence graph we select the pair (λ, µ) to maximize preci-
sion. In both graphs companies are colored based on their
industry classification code (SIC). In both graphs each node
represents one firm in our customer-suppliers database and
the size of the node is given by its degree plus one. To infer
the conditional independence graph we simply use the time
series of firms’ monthly returns.

5. Conclusion
Conditional Gaussian Graphical Models provide an impor-
tant tool to uncover relationships among different variables
in complex systems. We use such tool to uncover link-
ages among firms in financial markets and see whether such
links can be understood from an economic point of view.
Using returns data the use of graphical models seems to
uncover industry relationships among firms. However, it
seems to not provide further information about the nature
of these relationships besides the identification of indus-
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Figure 11. Customer-supplier network in 1991. Each node rep-
resents a firm. Each edge represent the existence of a customer-
supplier linkage between the two linked companies. Colors rep-
resent firms’ industries and the size of a firm is determined by its
total degree plus 1 (i.e. the number of linkages a firm has plus
one). Firms industries are determined by SIC codes.

try clusters. In particular we tried uncovering customer-
supplier relations by inferring the patterns of zeros in the
time series of precision matrices. We believe we may need
to include more information about each particular firm to
be able to capture such type of relationships.

5.1. Future Work

In this section we provide some ideas about how we may
improve the current paper

• In our current experiments we used a subset of data
in which we have complete information about firms
returns. However in the complete data set, there are
many other firms for which there are missing return
entries. Since they have missing entries we do not
consider the existence of such firms. To include more
firms then one may explore strategies like Kalman
smoothing and low rank matrix completion.

• Use more information about each company to have a
better description of each of them. We plan to con-
sider data on earnings, cost of capital, profits before
taxes and volume of each company. We also plan to
control for time trends in data before using such in-
formation, e.g. using the Hodrick-Prescott filter (see
(Hodrick & Prescott, 1997)). Moreover, to improve

the performance of prediction of a firm return based
on its linked companies one may want to explore the
use of kernel trick.

• Finally, based on the results of the previous step we
will assess whether using GGMs (with financial data)
may help researchers to tackle the problem of opacity
in uncovering business networks.
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